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Abstract

Current video coders employ motion compensated pixel-to-pixel prediction, which largely
ignores significant spatial correlations and the fact that true temporal correlations vary
with spatial frequency. Earlier work from our lab proposed to first spatially decorrelate the
block of pixels by performing temporal prediction in the transform domain, and to effectively
account for both spatial and temporal correlations. To adapt to variations in video signal
statistics, the encoder switches between a set of appropriately designed prediction modes.
This setting critically depends on efficient offline learning of transform domain temporal
prediction modes. Significant challenges include: i) issues of instability and mismatched
statistics inherent to closed loop design; and ii) severe non-convexity of the cost function
trapping the system in poor local minima. Statistics mismatch is tackled by an appropriate
paradigm for system design in a stable open loop fashion, but which asymptotically mimics
closed loop operation. The non-convexity is handled by deterministic annealing, a powerful
non-convex optimization tool whose probabilistic formulation allows for direct optimization
of the cost function with respect to the discrete set of prediction modes, and whose annealing
schedule avoids poor local minima. Experimental results validate the method’s efficacy.

Introduction

Modern video coders exploit temporal correlations by employing motion compensated
prediction [1,2]. Simple pixel copying of the best (motion-compensated and possibly
interpolated) block from the reference frame is used to obtain the prediction signal.
The resulting prediction error is then decorrelated by the discrete cosine transform
(DCT) and the transform coefficients are quantized and sent to the decoder. Such
pixel-to-pixel temporal prediction is suboptimal in that it ignores significant spatial
correlations in the video signal. Several approaches that account for spatial corre-
lations include multi-tap filtering [3, 4] and three-dimensional subband coding [5, 6],
which incur high encoder complexity. An earlier work from our lab [7] proposed an
effective way to account for complex spatio-temporal correlations by first spatially
decorrelating a block via DCT and subsequently preforming temporal prediction of
the resulting uncorrelated transform coefficients. Temporal evolution of each DCT
coefficient in a block, along a motion trajectory, is modelled as a first order auto-
regressive process. Moreover, transform domain temporal prediction (TDTP) per-
fectly captures and exploits how the temporal correlation varies across frequencies,
which is otherwise masked in the pixel domain.

Video signals exhibit considerable variations in local statistics and hence signifi-
cant diversity in temporal correlations of transform coefficients. In an earlier variant,
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we proposed optimizing the TDTP parameters for each sequence being compressed,
a multi-pass approach, for applications involving offline video compression [8]. Real-
time encoding, however, requires adaptation to signal statistics, and a reasonable
approach involves a set of prediction modes for the encoder to switch between, which
were designed offline from a training set of diverse video sequences. Early experimen-
tation has shown that realizing the full potential of the approach depends critically
on effective design of the prediction modes. This is the main motivation for the work
described in this paper. The non-linear operation of TDTP mode assignment makes
it a challenging design problem, since the cost derivatives with respect to the TDTP
mode decisions vanish almost everywhere. Having encountered a similar difficulty in
the context of intra-mode design, we proposed to recourse to an iterative “K-means”
clustering [9] style design in [10], wherein the input is partitioned into clusters based
on the modes that minimize their prediction residual, followed by an update of the
mode representing each cluster. However, this greedy approach does not guarantee a
globally optimal solution and is, in fact, often seen to converge to poor local minima.

TDTP modes are optimized to enhance prediction performance, but prediction is
applied to the reconstructed samples, which are modified by update to the TDTP
modes. This provides a first glimpse of the closed loop conundrum discussed below.
Thus, we need an iterative design procedure, wherein we design TDTP modes for a
given reconstructed sequence, and then update these reconstructions. In this context,
various design techniques have been proposed. In the standard closed loop design [11],
the predictor from the previous design iteration is used to update reconstructions in
a closed-loop manner. However, this leads to mismatch in statistics, which often
yields catastrophic error buildup at low rates, due to error propagation through the
prediction loop. Specifically, the predictor is optimized for the reconstructions in the
previous iteration, while it operates on the reconstructions of the current iteration. To
tackle this, asymptotic closed-loop (ACL) design was proposed in [12]. ACL operates
in open loop, in that reconstructed samples from the previous iteration are used as the
prediction reference, providing a stable platform for design. Moreover, as the system
approaches convergence, the reconstructed sequence remains largely unchanged from
iteration to the next, effectively implementing closed-loop operation.

Although ACL provides a stable design platform, experiments show that it is nev-
ertheless highly sensitive to initialization, indicating severe non-convexity of the cost
surface. Each TDTP mode can be viewed as a high dimensional vector of parameters,
and the mode design is essentially vector quantizer design, a notoriously non-convex
optimization problem. This difficulty is further exacerbated by the design instabili-
ties. In this paper, we overcome these shortcomings by embedding the design within a
deterministic annealing (DA) framework. Inspired by principles of statistical physics
and information theory, DA was developed and shown to be a powerful non-convex
optimization tool [13]. The inherent probabilistic nature of DA allows us to deter-
ministically optimize the effective cost function, an appropriate expectation function
that efficiently accounts for and replaces the stochastic wandering on the cost surface
of the classical method of simulated annealing [14]. With a careful annealing schedule
DA is shown to avoid poor local minima. The optimization benefits of DA are comple-
mented by the design stability of ACL. The resulting DA-ACL framework effectively
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overcomes all the design challenges and provides an efficient way to design TDTP
modes. Experimental results demonstrate the efficacy of the proposed approach.

Problem Statement

Let us consider an input training set which is partitioned into segments, each of which
is called a group of pictures (GOP). Let the set of frames in a GOP be denoted by Ng.
Let us consider a block b in a frame n that is inter-predicted by a block in reference
frame n − 1. We spatially decorrelate the block and perform prediction in the DCT
domain. The encoder switches between prediction modes {αk}, where each αk is a
block of prediction coefficients. Let the prediction mode chosen for a GOP g be α̂g.
The temporal evolution of each DCT coefficient xn,b,p in the block is modelled as a
first-order auto-regressive process:

xn,b,p = α̂g,px̂n−1,b,p + en,b,p (1)

where x̂n−1,b,p is the corresponding DCT coefficient of the reference block and en,b,p is
the innovation. The problem at hand is to design the prediction modes to minimize
the overall prediction error of the training set. Thus the cost function is,

E =
∑

g

∑

n∈Ng

∑

b

∑

p∈b
(xn,b,p − α̂g,px̂n−1,b,p)2 (2)

Background

Iterative K-mode predictor design

As mentioned earlier, the non-linear TDTP mode assignment makes it a challenging
problem to optimize the overall prediction error w.r.t TDTP modes. We can thus
design TDTP modes in an iterative manner that are optimized for a given set of
reconstructions x̂b,n at the encoder. With some initialization of the TDTP modes,
the algorithms iterates between the following steps:

• Mode assignment: For a given GOP g, assign the best mode from the set of
TDTP modes which minimizes the prediction error for the GOP.

• TDTP modes update: Let Nk be the set of frames that share the same TDTP
mode. The pth component of optimal prediction mode αk for this cluster is
given by,

αk,p =

∑
n∈Nk

∑
b xn,b,px̂n−1,b,p∑

n∈Nk

∑
b x̂

2
n−1,b,p

(3)

With the new set of prediction modes, the reconstructed samples at the encoder are
updated and these steps are repeated until convergence. The reconstructions can be
updated in different ways, leading to the following design paradigms.
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Figure 1: Asymptotic closed loop design

Open-loop, closed-loop and asymptotic closed-loop design

Several techniques have been proposed for the design of predictors and quantizers.
Since most modern video codecs employ a fixed standard quantizer, the current paper
focuses on the predictor design problem. Prediction design in open-loop approach is
based on the original sample statistics (see, e.g., [15]). A major shortcoming of this
approach is that the predictor must operate in closed loop as the decoder does not
have access to original samples. In closed loop design [11], predictors are designed
iteratively. Let α̂i−1

g denote the prediction coefficients for GOP g at iteration i − 1.
The reconstructed transform coefficients for the corresponding GOP in iteration i is
updated as,

x̂i
n,b,p = α̂i−1

g,p x̂
i
n−1,b,p + êin,b,p (4)

where êin,b,p is the quantized prediction error en,b,p = xn,b,p − α̂i−1
g,p x̂

i
n−1,b,p. Predictor

α̂i−1
g,p was designed for x̂i−1

n,b,p. However, it is used with the reconstructed samples

x̂i
n,b,p of the next iteration. Errors due to mismatch propagate through the prediction

loop, causing design instability, which often proves catastrophic at low rates. To
address this issue, ACL was proposed in [12]. ACL operates in an open loop fashion,
while eventually optimizing the system for closed-loop operation. The reconstructed
transform coefficients for iteration i is updated as,

x̂i
n,b,p = α̂i−1

g,p x̂
i−1
n−1,b,p + êin,b,p (5)

where êin,b,p is the quantized prediction error en,b,p = xn,b,p − α̂i−1
g,p x̂

i−1
n−1,b,p. The pre-

dictor α̂i−1
g,p is applied to reconstructions x̂i−1

b,n,p, the same set of reconstructions that it
was optimized for, thereby eliminating statistical mismatch. The new set of recon-
structions are then used to design predictor α̂i

k. Upon convergence, the reconstructed
samples remain largely the same from one iteration to the next. Thus, predicting from
x̂i−1
b,n,p is the same as predicting from x̂i

b,n,p, which is essentially closed loop operation.
Fig. 1 illustrates the ACL design paradigm.
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Proposed Method

The proposed approach is inspired by, and builds on deterministic annealing (DA) [13].
DA is derived from principles of information theory and is motivated by intuition
gained from the annealing process in physical chemistry, wherein certain systems are
driven to their low energy states by gradually cooling the system. Analogously, we
randomize the TDTP mode assignment and deterministically minimize the overall
prediction error subject to the specified level of randomness. The amount of ran-
domness is measured by Shannon’s entropy and is essentially characterized by the
“temperature” of the system. In contrast with the hard TDTP mode assignment
in (2), the prediction mode assignment in DA is probabilistic, and is differentiable
everywhere (with respect to the assignment probabilities), paving the way to effective
overall optimization of the system. The process starts at high temperature, where
all TDTP modes are coincident, effectively converging to a single distinct globally
optimal mode, regardless of initialization. The system is then gradually cooled, and
the minimum is tracked. During annealing, the reconstructions are updated within
the ACL paradigm, providing a stable design platform. At ACL iteration i, let P i

k|g
denote the probability of assigning TDTP mode αi

k to GOP g. The prediction error
to be minimized is given by the expectation,

J =
∑

g

∑

k

∑

n∈Ng

∑

b

∑

p

PgP
i
k|g(xn,b,p − αi

k,px̂
i
n−1,b,p)

2 (6)

where Pg denotes the probability of the input GOPs (assumed uniform). The degree
of randomness is measured by the Shannon entropy,

H = −
∑

g

∑

k

P i
gk log(P

i
gk), (7)

where P i
gk = PgP

i
k|g is the joint distribution over TDTP modes and input GOPs. The

problem can be posed as the minimization of the Lagrangian cost function, directly
analogous to Helmholtz free energy of statistical physics:

F = J − TH (8)

The degree of randomness is controlled by T , which characterizes the temperature. As
the temperature decreases, the system trades entropy for distortion. At the limit of
zero randomness, the process directly minimizes the overall prediction error. Assum-
ing uniform distribution over the training set, it is straightforward to show that the
association probabilities that minimize the Lagrangian cost (subject to the obvious
additional constraint

∑
k P

i
k|g = 1), are given by the Gibbs distribution:

P i
k|g =

e
−∑

n∈Ng

∑
b
∑

p(xn,b−αi
k,px̂

i
n−1,b,p)

2

T

∑
j e

−∑
n∈Ng

∑
b
∑

p(xn,b,p−αi
j,p

x̂i
n−1,b,p

)2

T

(9)
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Obtain Input Sequence

Initialize Encoder Reconstructions

'Heat' Predictor, T=T0, i=0

Optimize conditional probabilities

Optimize Prediction Modes

Re-optimize Conditional
Probabilities

ACL Update of Encoder Reconstructions

Reached Convergence?

No

Cooling Complete?
No

Yes

Exit with final Prediction Modes

i=i+1

T=bT;
i=0

Convergence of Conditional
Probabilities?

No

Yes

Yes

Figure 2: Flow chart of the proposed algorithm

Note that, at high temperatures, the association probabilities are uniform, and
hence the system achieves maximum entropy. As the temperature is lowered, more
probability is assigned to nearby TDTP modes, making the system more discrimina-
tory.

To obtain the optimal prediction mode we set the partial derivative to zero:

∂J

∂αi
k,p

=
∑

g

∑

n∈Ng

∑

b

2PgP
i
k|g(xb,n,p − αi

k,px̂
i
b,n−1,p)(−x̂i

b,n−1,p)

= 0 (10)
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Thus, the pth component of the optimal prediction modes is given by,

αi
k,p =

∑
g

∑
n∈Ng

∑
b P

i
k|gxb,n,px̂

i
b,n−1,p∑

g

∑
n∈Ng

∑
b P

i
k|g(x̂

i
b,n−1,p)2

(11)

At high temperatures, as the association probabilities are uniform, it follows from
(11) that all the prediction modes are coincident, i.e., and essentially implement a
single optimal prediction mode for the entire training set regardless of initialization.
In other words, the method is invariant to initialization as it achieves the global
optimum at high temperature. As the temperature is lowered, the system becomes
more deterministic with the emergence of more prediction modes through a sequence
of phase transitions.

The reconstructed samples in GOP g are now updated via ACL as,

x̂i+1
n,b,p =

∑

k

P i
k|g(α

i
k,px̂

i
n−1,b,p + êik,n,b,p) (12)

where, êik,n,b,p is the quantized prediction error eik,n,b,p = xn,b,p − αi
k,px̂

i
n−1,b,p. The

overall design procedure is illustrated in Fig. 2.

Experimental Results

The proposed method is implemented in HM 14.0. To simplify the experiments,
all the sequences are coded in IPPP format, only the previous frame is allowed as
reference, both prediction and transform block sizes are restricted to 8 × 8, and the
sample adaptive offset function option is disabled. A set of six TDTP modes were
designed by each of the following design methods: i) The proposed method referred
as DA-ACL ii) K-mode design with “plain ACL”referred to as ACL iii) Our previous
“crude” method of providing a set of TDTP modes, each chosen from a distinct
training sequence, referred to as TDTP. The average bit-rate reduction is calculated
as per [16]. The training set sequences are listed in Table 1. The bit-rate savings over
standard HEVC for the test set sequences are tabulated in Table 2. The consistent
performance gains and significant bit-rate reduction over the test set provide clear
evidence for the utility of the proposed approach.

Conclusions

This paper presents a novel near-optimal procedure for designing transform domain
temporal prediction modes. It effectively resolves significant shortcomings due to sta-
tistical mismatch and design instability of standard approaches. The deterministic
annealing-based framework enables direct optimization of the overall cost with respect
to prediction mode decisions, and avoids many poor local minima that trap its com-
petitors. Substantial and consistent gains over HEVC, in terms of bit-rate reduction
over the test sequences, demonstrates the efficacy of the proposed approach.
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Sequence
BasketballDrive (1080p)

BQTerrace (1080p)
ParkScene (1080p)
BQSquare (240p)
RaceHorses (240p)

City (cif)
Stefan (cif)

Container (cif)
Tempete (cif)
Waterfall (cif)
Highway (cif)

Coastguard (cif)
Bus (cif)

Mobile (cif)

Table 1: The training set of video sequences

Sequence TDTP ACL DA-ACL
Cactus (1080p) 8.4 8.7 8.8

KristenAndSara (720p) 0.9 1.4 4.4
Johnny (720p) 2.7 3.3 2.4
vidyo3 (720p) 3.5 4.8 6.1
vidyo1 (720p) 4.2 2.1 5.1

FourPeople (720p) 0.4 0.3 2.9
RaceHorses (480p) 2.1 2.6 3.9
Mobisode2 (480p) 1.0 1.8 3.4
Kimono1 (480p) 10.0 10.2 12.1
Keiba (480p) 3.6 3.9 4.1

BlowingBubbles (240p) 0.2 1.0 1.0
Mother-daughter (cif) 0.2 0.2 2.0

Suzie (qcif) 1.7 1.0 2.1
Average 3.0 3.2 4.4

Table 2: Performance over the test set: bit-rate savings over HEVC ( in % ) for the Y
component
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