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Deformable Registration of Biomedical Images
Using 2D Hidden Markov Models
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Abstract— Robust registration of unimodal and multimodal
images is a key task in biomedical image analysis, and is
often utilized as an initial step on which subsequent analysis
techniques critically depend. We propose a novel probabilistic
framework, based on a variant of the 2D hidden Markov
model, namely, the turbo hidden Markov model, to capture the
deformation between pairs of images. The hidden Markov model
is tailored to capture spatial transformations across images via
state transitions, and modality-specific data costs via emission
probabilities. The method is derived for the unimodal setting
(where simpler matching metrics may be used) as well as the
multimodal setting, where different modalities may provide very
different representations for a given class of objects, necessitating
the use of advanced similarity measures. We utilize a rich model
with hundreds of model parameters to describe the deforma-
tion relationships across such modalities. We also introduce a
local edge-adaptive constraint to allow for varying degrees of
smoothness between object boundaries and homogeneous regions.
The parameters of the described method are estimated in a
principled manner from training data via maximum likelihood
learning, and the deformation is subsequently estimated using an
efficient dynamic programming algorithm. Experimental results
demonstrate the improved performance of the proposed approach
over the state-of-the-art deformable registration techniques, on
both unimodal and multimodal biomedical data sets.

Index Terms— Registration, deformable, multimodal, hidden
Markov models.

I. INTRODUCTION

MODERN advances in imaging technology have enabled
the collection of huge amounts of image data of com-

plex biological systems. The extraction of information from
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this image data and subsequent analysis and interpretation on
the information are the central tasks in the field of biomedical
image computing. Due to the large size of these datasets, man-
ual annotation and analysis is usually not feasible - the devel-
opment of robust automated and semi-automated techniques
is critical for analysis and diagnosis. Image registration [1],
which aims at accurately aligning structures or regions across
related images, is an important problem in biomedical image
computing, and is an active area of current research.

Image registration is used in a variety of applications in
biomedical image analysis. Assessing the efficacy of treat-
ments requires registration in order to accurately compare
pre-treatment and post-treatment scans. Atlas-based methods,
which analyze subject data in comparison to one or more
standard models, critically depend on accurate registration.
Often, different types of information, eg., structural and
functional, can be extracted from different image modalities,
and registering these multimodal images is an important
step in combining the complementary sources of information.
Alignment of structures across temporal or depth-based vol-
umes are important in time-lapse and 3D network reconstruc-
tion. Hence, accurate deformable registration [2] is the need
of the hour.

This paper is organized as follows: In section II, we present
an overview of related work in biomedical image registration,
ranging from early work to recent techniques. Section III
presents a method for deformable registration with a generic
theoretical formulation based on the turbo hidden Markov
model [3]. The method is first derived for unimodal data
and then extended to the multimodal, multi-channel setting.
We also describe an edge-adaptive constraint which allows
for variation in degree of smoothness across the image.
In section IV, we provide experimental evaluation of the pro-
posed algorithm, for unimodal registration of MRI data as well
as multimodal registration of connectome data, in comparison
with related techniques in literature, and discuss experimental
results. Finally, in section V, we provide concluding remarks.

II. BACKGROUND AND RELATED WORK

Registration is a classic problem in biomedical image analy-
sis and has been widely studied over the past three decades.
Early research in unimodal registration focused on rigid align-
ment [4], [5]. Due to the nature of the unimodal registration
problem, the sum of squared differences (SSD) [6]–[8] and
the mean squared difference (MSD) [9], [10] of image inten-
sities have been widely and successfully used to measure data
similarity.
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Early work on multimodal registration used intensity
levels [11] and joint entropy [12] as the measure of information
across modalities. The correlation ratio [13] and normalized
cross correlation [14] are amongst the popular similarity
measures in computing optimal transformations. Mutual infor-
mation (MI), which measures the statistical dependence of
two random variables, was proposed in [15]–[17] for rigid
alignment problems and quickly gained popularity as a mea-
sure of similarity for both rigid and deformable registration,
and in both unimodal and multimodal settings. (A survey of
various MI-based methodologies for medical image registra-
tion is available in [18].) In [19], a deformable registration
technique was introduced which uses both a global affine
transformation and local transformations, with MI as a mea-
sure of information. The local transformations are modeled
with Free Form Deformations (FFD) on a non-rigid lattice of
control points using cubic B-splines for interpolation. Several
subsequent papers leveraged FFDs, extending their use to
multimodal data [20], [21] and using variants of MI (such
as Conditional MI (CMI) in [22] and Normalized MI (NMI)
in [23]). In [24] and subsequently [25], pixelwise matching
is performed using a cost function based on MI under a
global smoothness constraint. Dense deformable registration is
performed by modeling it as a minimal cost graph problem on
a Markov random field (MRF) built upon the FFD framework
in [26] and this idea is further developed in [27]. Smoothness
constraints are imposed through connectivity of nodes and
labels correspond to deformations. For the multimodal case,
MI (or a variant of MI) is used as the matching criterion.

A significant drawback of these techniques lies in the
estimation of the joint histogram between modalities where
one or both of the modalities proffers multiple channels of
information. A natural extension of MI-based approaches to
include data with multiple channels (e.g., RGB data) would be
to use multivariate MI. However, the complexity of populating
higher dimensional joint histograms grows exponentially with
the number of channels, and these methods quickly become
impractical for multi-channel modalities. Further, inadequate
population of such high dimensional histograms due to sparse
availability of data could lead to inaccuracies in the inferred
deformation.

Some notable prior research has been devoted to the
problems associated with estimation of multivariate MI.
A simplifying approximation of the general multivariate MI
was proposed as a similarity measure in [28]. In [29], an
entropic graph-based implementation was used to estimate
α-MI of multiple channels.

The concept of self-similarity was introduced as a means for
multimodal registration in two recent papers, [30] and [31],
which introduce the modality independent neighborhood
descriptor (MIND) and the self-similarity context (SSC)
descriptor respectively. These descriptors exploit local struc-
tural similarities between multimodal image pairs and are
calculated on a defined spatial search region in each modality.
SSD is used as a measure of distance between descrip-
tors, and final deformation is estimated using Gauss-Newton
optimization. However, as acknowledged in [30], a limita-
tion of such approaches is that they require an anatomical

feature to be present in both modalities. While this may be
a reasonable requirement in the case of structurally similar
modalities such as MRI/CT, some multimodal datasets, such
as connectome [32] data, do not exhibit such distinct features
between their modalities. In addition, these methods require
modification to be used with multi-channel inputs.

Our preliminary work [33] exploited the probabilistic nature
of the 2D hidden Markov model (HMM) framework to per-
form multimodal fusion on connectome data. To the best of
our knowledge, this work represents the first effort to apply
2D HMMs to the deformable registration problem. (A recent
paper [34] utilizes HMMs for deformable registration; however
the HMM is used in its conventional 1D form, and the method
is domain-specific to computed tomography angiography.)
In this paper, we provide a detailed view of the registra-
tion algorithm as well as additional experimental validation.
We begin by developing the HMM-based registration frame-
work for the basic setting of deformable registration, i.e., the
single modality problem. We then show how the framework
may be extended to the multimodal setting. Further, we show
how to add the capability to handle local differences in the
degree of smoothness within an image.

Our primary motivation was to develop a method for
2D-2D deformable registration which was applicable to the
general case of multimodal, multi-channel input images. The
hidden Markov model framework provides a platform to
estimate parameters in a principled manner even from unla-
beled training data (i.e., source-target image pairs without
labeled dense point-wise correspondences). We note the state-
of-the-art approaches for the deformable registration problem
which we compare against ([27]–[31]) require parameters of
the registration model to be manually set. However, in the
proposed approach, only the hyperparameters of the HMM
framework need to be specified. The data-specific parameters
of the model, describing both the inter-modal data similarity
and the degree of smoothness, are automatically learned from
training data. This allows us to define rich models (with the
number of model parameters ranging in the order of hun-
dreds). Therefore, we can effectively register even challenging
datasets having complex multimodal relationships, such as the
cellular microscopy modality described in Section IV-C.

III. PROPOSED APPROACH

Our aim is to find the deformation that best explains the
relation between one image (the “source”) and a second
image, from the same or different modality (the “target”).
We propose a probabilistic method that estimates the global
deformation with a set of local deformations. There is a
clear trade-off between flexibility in local deformations so
that high accuracy is achieved in discerning the true structural
relationship between the source and the target, and the need
to impose global coherence and avoid highly “non-smooth”
deformations. Moreover, every local transformation results in
a mapping between the two modalities and there must be a
way to measure and maximize the goodness of this match
within the constraints of the deformation framework.

Translation consistency in neighborhoods and cross-
modality matching costs are embedded into a 2D HMM built
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Fig. 1. A two-dimensional hidden Markov model build on a first
order Markov mesh random field, with hidden states (grey squares) and
observations (circles).

on a first order Markov mesh random field (MMRF). Local
translations are “hidden” and their impact is felt through the
corresponding data matching costs. The parameters of these
data matching costs are data dependent, and are learned from
source-target pairs of training images. In addition, the degree
of smoothness of the optimal deformation can differ consid-
erably across different types of data, and hence the training
images are also utilized in learning smoothness parameters.

A. 2D Hidden Markov Models and the Turbo Approximation

Conventional (1D) HMMs have been widely used in various
applications. This has been feasible due to the existence of
computationally efficient algorithms for the central problems
associated with HMMs [35] - inferring the optimal state
sequence given observation data and a model, and learning
the parameters of the model. However, direct extension of
these to 2D leads to exponential increase in complexity and
is intractable in most practical applications.

There has been considerable interest in developing algo-
rithms that approximate the performance of 2D HMMs at a
lower complexity. Most approaches approximate 2D HMMs
with one [36] or more [3], [37] 1D HMMs. The turbo
hidden Markov model (T-HMM) introduced in [3] consists of
horizontal and vertical 1D HMMs that are decoded separately
but “communicate” in a manner similar to decoding of turbo
codes [38]. Each row of the 2D HMM is represented by a
1D HMM during a horizontal pass, and each column by a
1D HMM during a vertical pass (see Fig. 2). Alternate horizon-
tal and vertical passes induce prior probabilities on each other,
and are repeated until they converge to a required degree of
agreement. Optimal state sequences are estimated via delayed
decisions on posterior probability vectors at each node, rather
than a greedy “winner-take-all” scheme. The T-HMM frame-
work provides efficient approximations for both learning [39]
and inference [3], and has been used in applications such
as speech presence detection [40] and face recognition [41].
In addition, it has been shown [3] to outperform other
2D HMM approximations. The T-HMM is used for both
learning and inference in the proposed approach.

B. Data Similarity Measure

The probability of matching a feature vector in the source
image to a feature vector in the target image is captured by
the emission probabilities of the HMM.

Fig. 2. Turbo decoding of a 2D HMM, where alternating horizontal and
vertical passes consist of separately decoded rows and columns that induce
priors on each other.

Fig. 3. Mapping feature vector Sx,y at point (x, y) in the source image to a
feature vector Tx+τx ,y+τy at point (x+ τx , y+ τy) in the target image using
a translation τ .

In our design, each state, q , of the HMM corresponds to a
specific, unique translation τ relating the source and target, and
whose components are τx and τy in the x- and y-directions,
respectively. A state with translation τ maps a point (x, y)
in the source to (x + τx , y + τy) in the target. Therefore,
the emission probability bτ

x,y represents the probability of
matching the source feature vector at (x, y), given by Sx,y ,
to the target feature vector at the given translation, given by
Tx ′,y′ . (see Fig. 3.)

bτ
x,y = P(Tx ′,y′ |Sx,y) (1)

This probability can be modeled in various ways in single
modality problems, for example, using a simple similarity
metric such as sum of absolute differences in intensity or
correlation on patches from source and target images. In our
experiments, we use a term based on SSD of intensities to
model emission probability.

bτ
x,y =

1√
2πσSS D

exp

{
− ετ

x,y

2σ 2
SS D

}
(2)

where ετ
x,y is the sum of squared differences in sliding

windows of size (2W + 1)× (2W + 1) centered at the points
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of interest in the source and target images.

ετ
x,y =

W∑
xw,yw=−W

(
Sx+xw,y+yw − Tx ′+xw,y′+yw

)2 (3)

C. Extending to Multimodal Data

Since different modalities may vary greatly in the way they
represent objects from the same class, we cannot directly
apply intensity-based similarity measures for registration of
multimodal data. Instead, we assume that the feature vectors
of the source and target images at specific locations are not
directly related, but rather, related only through the object
type at the corresponding locations in the underlying “true”
arrangement. In other words, the source feature vector, the
underlying object type at the corresponding location in the
source (ωS

x,y), the underlying object type at the location after
translation in the target (ωT

x ′,y′) and the target feature vector
form a Markov chain.

Sx,y ←→ ωS
x,y ←→ ωT

x ′,y′ ←→ Tx ′,y′ (4)

In our model, the underlying object types and their spatial
relations are hidden, information from them can only be
extracted from the observable features in the images from each
modality.
We learn the distribution of the source feature vectors, and
rather than making a hard decision on object type at each node,
we obtain its posterior probability. Thus, for data consisting
of objects belonging to M classes, we learn P(ωm |Sx,y) for
each class m ∈ {1, 2, . . . M} at every node. Applying the law
of total probability to (1) under the Markov assumption (4)
results in:

bτ
x,y =

M∑
m=1

P(ωm |Sx,y)P(Tx ′,y′ |ωm) (5)

Since linear combinations of Gaussians can approximate arbi-
trarily shaped densities, we use a mixture of K Gaussians to
model P(Tx ′,y′ |ωm) for each object class ωm .

P(Tx ′,y′ |ωm) =
K∑

k=1

wk
m P(Tx ′,y′ |ωk

m) (6)

where mixture component weights must satisfy the constraint:

K∑
k=1

wk
m = 1 ∀m ∈ {1, 2, . . . M} (7)

Each individual component density is a Gaussian having
dimensionality D, equal to that of the target feature space.

P(Tx ′,y′ |ωk
m) = exp{− 1

2 (Tx ′,y′ −μk
m)

T
�k

m
−1

(Tx ′,y′ − μk
m)}

(2π)
D
2 |�k

m |
1
2

(8)

where μk
m and �k

m are the mean and covariance of the
Gaussian respectively.

Fig. 4. Neighboring translations are correlated.

D. Deformation Smoothness Model

Each state of the HMM corresponds to a translation τ
relating the source and target. The translations of neigh-
boring nodes are correlated as quantified by the transition
probabilities of the HMM (see Fig. 4). Equivalently, in a
first order Markov mesh random field (MMRF), the state
of a node depends on the state of its adjacent neighbors
in the horizontal and vertical directions. While an arbitrary
transition probability matrix may be used, we introduce some
assumptions in order to reduce the number of free parameters
in the system. These are outlined below.

Assuming a stationary HMM, the transition probabilities of
the horizontal and vertical 1D HMMs are given by

a H (τ, τ ′) = P(qx,y = τ ′|qx,y−1 = τ )

and

aV (τ, τ ′) = P(qx,y = τ ′|qx−1,y = τ )

respectively. In the case of cellular microscopy images,
we make the simplifying assumption that parameters of hor-
izontal and vertical HMMs are identical as these images
typically do not exhibit directionality along coordinate axes
(as is often the case in faces [39], man-made scenes, and
certain natural images):

aV (τ, τ ′) = a H (τ, τ ′) = a(τ, τ ′) (9)

We also impose shift invariance so that probability of moving
from one state to another only depends on the difference in
the corresponding translations:

a(τ, τ ′) = a(τ ′ − τ ) = a(δτ ) (10)

where δτ = [δτx δτy]T and δτx and δτy are, respectively,
the horizontal and vertical components of the difference in
translations.

Further, we restrict ourselves to parametric transition prob-
abilities to increase robustness. For a Gaussian model with a
covariance matrix �, the general expression is

a(δτ ) ∝ exp

{
−1

2
(δτ )T �−1(δτ )

}
(11)

Noting again the lack of consistent directionality in
microscopy data, we simplify to an isotropic model with a
single variance parameter σ 2.

� =
[
σ 2 0
0 σ 2

]
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Incorporating the isotropic model into (11) results in a
simplified expression for transition probability, given below.

a(δτ ) ∝ exp

{
−1

2

(
δτ 2

x + δτ 2
y

σ 2

)}
(12)

E. Edge-Adaptive Smoothness Constraint

For data consisting of multiple objects, it is often observed
that large translations occur more frequently near object
boundaries than well inside object. This is usually due to the
choice of the model rather than a true biological mapping
across images. Similar behavior is noticed while computing
optical flow in images with multiple objects, and has been
addressed by including an structure-adaptive regularization
constraint in the cost function [42], [43]. We model this
variation in smoothness by introducing a spatially varying
transition matrix, parametrized by two Gaussians. The transi-
tion probability matrix at each point is calculated using local
“edgeness” at that point.

To calculate the edgeness at a given point (x, y),
we consider the set of all estimated object labels in a window
centered at that point. By normalizing the histogram of all
unique labels l in the window, we obtain [P(l)], the local
label probability vector. The label entropy around the point
(x, y) is given by

Hx,y = −
∑

l

P(l) log2 P(l) (13)

The label entropy in each window measures label uncer-
tainty in the window and is used to estimate edgeness.
We thus quantify edgeness E at (x, y) as

Ex,y = 1− e−Hx,y (14)

Note that this measure of edgeness approaches zero at low
entropy, and approaches one at high entropy. The transition
matrix at each point is modeled as a linear combination of
two Gaussian-parametrized matrices.

ax,y(δτ ) = Ex,y aE (δτ )+ (1− Ex,y) aI (δτ ) (15)

where aE (δτ ) denotes the transition matrix for points on cell
edges and aI (δτ ), that of interior points.

aE (δτ ) ∝ exp

{
−1

2

(
δτ 2

x + δτ 2
y

σ 2
E

)}
(16)

aI (δτ ) ∝ exp

{
−1

2

(
δτ 2

x + δτ 2
y

σ 2
I

)}
(17)

Hence, we allow for flexibility in the transition prob-
ability matrix according to the edgeness of the point in
question.

F. Estimation of Deformation Field

We infer the optimal state sequence using the Viterbi algo-
rithm with the modified forward-backward iterations described
in [3].

G. Parameter Estimation

Baum-Welch Training: The parameters of the HMM are
estimated in an unsupervised manner from source-target
image pairs. In the Baum-Welch algorithm ([44], [45])
HMM parameters are iteratively optimized to increase the
value of likelihood. Re-estimation formulas for these para-
meters are derived by maximizing Baum’s auxiliary function,
given by

Q(λ′|λ) =
∑

Q

P(Q|S, T, λ) log P(S, Q|T, λ′) (18)

with respect to λ′, where λ denotes the current estimate of
HMM parameters, λ′ the model re-estimate and Q, a sequence
of states Q = {qx,y, x = 1, 2, . . . X, y = 1, 2, . . . Y }.
S and T denote corresponding source and target images.
As noted in [35], this re-estimation procedure can be
interpreted as an implementation of the Expectation-
Maximization (EM) algorithm [46] and is known to monoton-
ically increase likelihood. The Baum-Welch algorithm was
originally derived for parameter estimation in 1D HMMs, but
is easily extended to the 2D case with the modified forward-
backward iterations of the T-HMM.

During the expectation step, we estimate the occupancy
probabilities of the horizontal and vertical 1D HMMs,

γ H,τ
x,y = P(q H

x,y = τ |S, T, λ)

γ V ,τ
x,y = P(qV

x,y = τ |S, T, λ)

and the overall occupancy probability

γ τ
x,y =

γ H,τ
x,y + γ V ,τ

x,y

2

We also estimate the ancillary training variables,

ξ H
x,y(τ, τ + δτ ) = P(qx,y+1 = τ + δτ, qx,y = τ |S, T, λ)

ξV
x,y(τ, τ + δτ ) = P(qx+1,y = τ + δτ, qx,y = τ |S, T, λ)

During the maximization-step, we maximize Baum’s aux-
iliary function with respect to each parameter to derive re-
estimation formulas.

For the SSD-based metric, there is only one emission
parameter, σSS D, whose re-estimation equation is given by

σ̂ 2
SS D =

∑
x,y,τ

γ τ
x,y ετ

x,y∑
x,y,τ

γ τ
x,y

(19)

To update emission parameters for the multimodal case, we
must first use the updated variables from the expectation step
to calculate the per-component posterior probability at each
node, given by

φτ,k
x,y,m =

P(ωm |Sx,y) wk
m P(Tx ′,y′ |ωk

m)

M∑
m=1

P(ωm |Sx,y)
K∑

k=1
wk

m P(Tx ′,y′ |ωk
m)

(20)

where x ′ = x + τx and y ′ = y + τy .
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Emission parameters are re-estimated using the following
update equations:

ŵk
m =

∑
x,y,τ

γ τ
x,y φτ,k

x,y,m

∑
x,y,τ,k

γ τ
x,y φτ,k

x,y,m

(21)

μ̂k
m =

∑
x,y,τ

γ τ
x,y φτ,k

x,y,m Tx ′,y′

∑
x,y,τ

γ τ
x,y φτ,k

x,y,m

(22)

�̂k
m =

∑
x,y,τ

γ τ,k
x,y φτ,k

x,y,m (Tx ′,y′ − μ̂k
m)(Tx ′,y′ − μ̂k

m)
T

∑
x,y,τ

γ τ,k
x,y φτ,k

x,y,m

(23)

For transition probability matrices parameterized by a single
Gaussian, the update equation is given by:

σ̂ 2 =

∑
x,y,τ,δτ

[ξ H
x,y(τ, τ

′)+ ξV
x,y(τ, τ

′)] [δτ ]2
∑

x,y,τ,δτ

[ξ H
x,y(τ, τ

′)+ ξV
x,y(τ, τ

′)] (24)

For edge-adaptive transition probabilities, the update
equations are given by:

σ̂ 2
E =

∑
x,y,τ,δτ

[ξ H
x,y(τ, τ

′)+ ξV
x,y(τ, τ

′)]
( Ex,y

ax,y(δτ )

)
[δτ ]2

∑
x,y,τ,δτ

[ξ H
x,y(τ, τ

′)+ ξV
x,y(τ, τ

′)]
( Ex,y

ax,y(δτ )

)
(25)

σ̂ 2
I =

∑
x,y,τ,δτ

[ξ H
x,y(τ, τ

′)+ ξV
x,y(τ, τ

′)]
(

1− Ex,y

ax,y(δτ )

)
[δτ ]2

∑
x,y,τ,δτ

[ξ H
x,y(τ, τ

′)+ ξV
x,y(τ, τ

′)]
(

1− Ex,y

ax,y(δτ )

)
(26)

Transition matrices are initialized uniformly. Parameters
relating to emission probabilities may be initialized either
by learning the data from the target feature vectors indepen-
dently of the source image, or by performing rigid matching
between the source and the target to estimate the parameters.
While training multiple Gaussians per cell class, we per-
form standard Expectation-Maximization for Gaussian mixture
models (EM-GMM) on each class to learn parameters of
each desired component, and use these for initialization.
P(ωm |Sx,y) is learned by applying EM-GMM on the source
modality.

H. Complexity

The complexity of training and decoding under the T-HMM
approximation is O(N2 XY ), where N is the number of states
of the HMM and XY is the number of nodes in the HMM.
N , in turn, is proportional to �2, where � is the maximum
translation allowed per direction. The complexity of algorithm
is hence O(�4 XY ).

In order to reduce complexity, we employ a multi-resolution
coarse-to-fine scheme, approximating a group of 4 nodes at

each resolution with a single node at the nearest coarser
resolution. For The complexity at each level is O(n2 X LYL),
where L is the index of each level, taking values from 1
(the finest level) to Lmax (the coarsest level), n is the number
of states at each level of resolution (a constant), and X LYL is
the number of nodes at the given level. Therefore,

X LYL = XY

4(L−1)
.

The total complexity considering all levels is

O(n2 XY ([
Lmax∑
L=1

4−(L−1)]). Since [
Lmax∑
L=1

4−(L−1)] ≈ 1.33, the

complexity of the hierarchical approach is O(n2 XY ),
independent of �.

IV. EXPERIMENTS AND RESULTS

A. Evaluation Metrics

We present the performance of the proposed approach on
two biomedical image datasets, both of which have manually-
guided expert labeled ground truth segmentations. To evaluate
registration quality, we generated automated segmentations by
warping the source image segmentations using the transfor-
mation obtained from each method. The resulting automated
segmentation (Strans) was compared to the manual target seg-
mentation (T ) using the Dice similarity measure (DSC) [47]
as a measure of overlap. The DSC is given by:

DSC = 2|Strans ∩ T |
|Strans | + |T | (27)

where |•| denotes cardinality in terms of number of pixels.
In addition, manually labeled landmark pairs across source

and target images are available for one of the datasets, and
registration accuracy is quantified in terms of the target reg-
istration error (TRE) metric. Consider a landmark located at
a point (xS, yS) in the source and (xT , yT ) in the target. Let
the landmark be translated to a point (x ′S, y ′S) under a given
transformation. Then, the TRE for the landmark point pair is
given by the Euclidean distance between the translated source
location and the target location.

TRE =
√

(x ′S − xT )2 + (y ′S − yT )2 (28)

To measure the statistical significance of improvement
in results, we obtained p-values by performing two-sided
Wilcoxon tests [48] on DSC and TRE values obtained using
the proposed approach paired with corresponding values from
each of the other methods. A value of p < 0.05 was
considered to indicate statistical significance.

B. Dataset 1: Multi-Subject Brain Data

The MR brain data sets were provided by the Center
for Morphometric Analysis at Massachusetts General
Hospital and are available at the Neuroimaging Informatics
Tools and Resources Clearinghouse (https://www.nitrc.org/
projects/ibsr/). The dataset consists of MR brain images of
dimensions 256 × 256 × 128, along with manual expert
segmentations of white and grey matter, for 16 subjects.
For each subject, the T1-weighted volumetric images have
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TABLE I

PERFORMANCE COMPARISON OF SINGLE-CHANNEL REGISTRATION METHODS MULTI-SUBJECT BRAIN MRI DATA,
MEASURED BY DSC OF GREY AND WHITE MATTER BETWEEN SUBJECTS AFTER WARPING

Fig. 5. Visual results on multi-subject MRI data. Results are shown as a checkerboard, where neighboring tiles come from different subjects. (a) Source-target
pair before registration (b-e) After registration using (b) MIND (c) SSC (d) DROP and (e) Proposed method.

Fig. 6. Visual results on multi-subject MRI data. Results are shown as a checkerboard, where neighboring tiles come from different subjects. (a) Source-target
pair before registration (b-e) After registration using (b) MIND (c) SSC (d) DROP and (e) Proposed method.

been positionally normalized into the Talairach orientation
(rotation only). We randomly select one subject as the target
and register images from each of the other 15 subjects to the
selected target image on a slice-wise basis. The SSD-based
metric (2) was used as similarity measure, with a window
size of 5. We use leave-one-out cross validation for training
and testing data per subject.

We compare the performance of the proposed method with
that of two self-similarity based registration approaches -
MIND [30] and SSC [31] - as well as dense (iconic) reg-
istration based on discrete optimization, DROP [27]. For
DROP, SSD was used as a measure of similarity since it
resulted in the highest DSC values, and the weighting factor λ
was empirically found to be 0.01. The optimal regularization
term α for MIND and SSC was found to be 0.1. We used three
levels of resolution for all methods to compare performance.

The quantitative results on the IBSR dataset are presented
in Table I, and visual results are shown in Fig. 5 and Fig. 6.
We observe that the proposed approach shows statistically
significant improvement over related approaches.

C. Dataset 2: Rabbit Retinal Connectome Data

We test our algorithm on the RC1 connectome, an open
access retinal volume described in [32]. The volume contains

images of a 0.25 mm diameter column of the Inner Plexi-
form Layer (IPL) of rabbit retina. The Viking viewer [49]
can be used to view the volume and annotations on it.
The entire volume consists of 370 slices of image data,
each corresponding to a physical section. 340 slices are
captured by an automated electron transmission microscope
ATEM and the other 30 slices are captured using Com-
putational Molecular Phenotyping (CMP), a form of light
microscopy. Each CMP slice is obtained by probing for either
an amino acid (Glutamate, Glutamine, Glycine, Taurine or
4-aminobutyrate (GABA)) or the excitation marker 1-amino-
4-guanidobutane(AGB). The resolution of these images is
both modalities is 2.18 nm/pixel. The dataset consists of
1132 total cells belonging to 6 major types and various
subtypes.

We focus our attention on the top “capstone” section of the
volume, which consists of six slices of CMP (each obtained
using a unique marker) followed by an ATEM slice. The
set of 6 CMP slices together provide “protein signatures”
for different cell types (i.e., functional information) which
are useful in cell classification. However, cell structure is
not clearly discernible in CMP images. ATEM is a com-
plementary source of information which clearly shows the
structure of cells including sub-cellular bodies, but does not
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TABLE II

PERFORMANCE COMPARISON OF MULTI-CHANNEL REGISTRATION METHODS ON CONNECTOME DATA, MEASURED
BY DSC OF BETWEEN ATEM IMAGES AND WARPED CMP IMAGES AND TRE OF LANDMARKS

Fig. 7. (Best in color) Visual results on a relatively easy cell. (a) RGB visualization of 3 CMP channels, with ground truth of the cell of interest outlined in
yellow (b) RGB visualization of the remaining 3 CMP channels, with outlined ground truth (c) ATEM image corresponding to the same region, with ground
truth overlaid in red (d-h) ATEM image with results from various registration methods overlaid in red, along with the corresponding DSC. (d) MIND (e) SSC
(f) α-MI (g) CAMIR (h) Proposed method.

Fig. 8. (Best in color) Visual results on a challenging cell. (a) RGB visualization of 3 CMP channels, with ground truth of the cell of interest outlined in
yellow (b) RGB visualization of the remaining 3 CMP channels, with outlined ground truth (c) ATEM image corresponding to the same region, with ground
truth overlaid in red (d-h) ATEM image with results from various registration methods overlaid in red, along with the corresponding DSC. (d) MIND (e) SSC
(f) α-MI (g) CAMIR (h) Proposed method.

capture functional information well. We evaluate the results
against ground truth on a completely annotated region in the
capstone section, consisting of 289 manually segmented cells
with expert annotations. 40 pairs of expert annotated landmark

locations in CMP and ATEM are also available and used for
evaluation of registration efficacy.

For this dataset, the multimodal data similarity measure
described in Section III-C was used. CMP was used as the
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source and ATEM as the target modality. The feature vector for
the target image is the average pixel intensity in a 5×5 neigh-
borhood, and hyper-parameters are set to M = 7 and K = 2.
Training and testing was done using a 4-fold cross-validation
strategy. We compare our method with CAMIR [28] embedded
in the FFD [19] framework, the α-MI-based approach outlined
in [29], MIND [30] and SSC [31]. The optimal value of
parameters for the α-MI approach were empirically found to
be α = 0.99 and k = 7 respectively. Three levels of resolution
were used for all approaches.

Quantitative results on the RC1 connectome dataset are
presented in Table II. Visual results are shown in Figs. 7 and 8.
We see the proposed method performs well in both easy as
well as challenging scenarios. The most improvement over
related methods is observed when there is a large deformation
between modalities. We believe this is due to the fact that
our approach can account for large deformations during the
training phase, by iteratively optimizing emission and transi-
tion parameters. A relatively easy scenario is shown in Fig. 7.
and an example of a cell with large changes across modalities
can be seen in Fig. 8. We observe that the proposed approach
shows both quantitative and qualitative improvement of regis-
tration accuracy in comparison to competing approaches.

D. Implementation Details

The described method was implemented in C++, with a
MATLAB wrapper for ease of interfacing. All experiments
were run on a dual-core 3.2 GHz Intel Core i3-550 processor
with 8 GB RAM. The OpenMP C++ API was used to
implement parallelization with 4 hyperthreads for the proposed
approach. Running time for pair of a 1024 × 1024 pixel
images from the connectome dataset are provided in Table II.

V. DISCUSSIONS AND CONCLUSION

We have presented a novel approach for registration of
unimodal as well as multimodal image data, with the defor-
mation system embedded in the probabilistic framework of a
2D HMM and solved using the T-HMM approximation. The
formulation is general and different types of transformation
models may be used. For registration of images with mul-
tiple objects, we allow flexibility in the smoothness of the
transformation by allowing local adaptation in the transition
probability matrix. Multi-channel input data, if available, is
utilized in an efficient manner by incorporating it into the
emission probabilities of the HMM. Further, we use an effi-
cient approximation to train and decode the T-HMM at reduced
complexity. The results of our method show substantial gains
over state-of-the-art deformable registration techniques on
both intra-modal and inter-modal problems.

We finally note that an important extension of the approach
would be to address the domain of 3D-3D registration
problems. Such an extension, while non-trivial, appears
within reach by leveraging a corresponding extension of
the turbo decoding approximation to iterate between three
(per-dimension) 1D-HMMs while inducing priors on each
other. Nevertheless, while the theory of turbo approximation
for 2D-HMM has been described in detail in [3], its formal

extension to higher dimensions, as well as that of the complete
approach herein, fall outside the scope of this paper and
represent an interesting direction for future work.
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