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ABSTRACT tors. In order to avoid high complexity during the search for the

. . o best linear transformation, each linear transformation is assigned a

This paper introduces a novel vector quantization (VQ) tech- . .
representative vector, such that the search can be done employing

ni wherein th ntized v ri in lying a lin- . . . . e
que, where t € quantized vecto .s obtained by applying a the representative vectors. The design algorithm is based on joint
ear transformation selected from a first codebook to a codevector .. .= . ; : .
ptimization of the linear transformation and the residual code-

selected from a second codebook. The transformation is selectecgooks_ It is shown that the proposed technigue yields high quality

from a family of linear transformations, represented by a matrix . - . ;
y » 1P y spectral magnitude quantizer with performance exceeding that of

codebook. Vectors in the second codebook are called residualmultista e vector quantizer (MSVQ) of similar complexity and bit
codevectors. In order to avoid high complexity during the search 9 q piextty

for the best linear transformation, each linear transformation is as-
signed a representative vector, such that the search can be done em-
ploying the representative vectors. The design algorithm is based 2. PROBLEM FORMULATION

on joint optimization of the linear transformation and the residual

codebooks. It is shown that the proposed technique yields high€t x be an M-dimensional input vector. According to the pro-
quality spectral magnitude quantizer with performance exceeding P0Sed approach, the quantized vedtas given by

that of multistage vector quantizer (MSVQ) of similar complexity

A~

and bit rate. x=Te (1)
whereT represents the linear transformation matrix selected from
1. INTRODUCTION the matrix codeboolCr and & represents a residual codevector
which is a member of the residual codebabk
High quality spectral magnitude quantization is crucial to many Using the mean square error (MSE) distortion measure, the

low bit rate speech coders employing a sinusoidal model [1] [2] average distortioD on the set of vectoréx } of size N is
[3] [4]. The spectral magnitudes are obtained by sampling the
spectrum of either the speech or the LP residual at frequencies 1 = e
corresponding to pitch harmonics. This procedure generates a D= N Z ll31c — Rl 2
variable dimension vector since the number of pitch harmonics k=0
changes in time.

In this paper, the variable dimension spectral vector is first
transformed into a fixed dimension vector, and then the fixed di- iy A
mension vector is quantized efficiently using the proposed VQ D= N Z I — Twcéil? (3)
technique. The fixed dimension is chosen such that there is no k=0
modeling distortion caused by transformation. The proposed VQ
approach reconstructs the input vector by applying a linear trans- ) -
formation selected from a first codebook to a codevector selected”€Ctor corresponding to the input vectag.
from a second codebook. The transformation is selected from a [N this work, the variable dimension spectral magnitudes are
family of linear transformations, represented by codebook of ma- fransformed into a fixed dimension (M=48) input vectors, using

trices. Vectors in the second codebook are called residual codevecdiscrete cosine transform (DCT). The objective here is to design

- ) ) ) ~ the codebookgr, C, that minimize (3) and to develop an efficient
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gies, Inc., Qualcomm, Inc., Rockwell International Corp., Panasonic Tech- Given the linear transformation codeba®k and the residual code-

nologies, Inc., and Texas Instruments, Inc. book(,, the optimal pail(T, &) for encoding the vectox is sim-

or, based on (1):

whereTy is the transformation matrix arég is the residual code-




ply given by 3.1. Design of the Linear Transformation Codebook
- I For a Given Residual Codebook
(T,8) =arg  min ||x — Tg|? 4 A 1o
Tecr.eecy Given the fixed residual codebook and the partitign our objec-
The minimization required in (4) is computationally intensive tive is to computéeT; fori = 1, ..., Nz to minimize (3). In other
if an exhaustive search in both codebooks is employed. To avoidwords,T; is obtained as the solution of the optimization problem

high search complexity, a sequential search is employed whereby

. A 2
the linear transformatiof is determined first. Ti = argmin Z [aic — Tew]| ©)
To simplify the search of the linear transformation codebook kix €U;
Cr, we map this codebook into a set of codevectftis} stored  The solution of the above minimization problem may not be unique.

in C¢, so that theith matrix of C7 namely, T, is mapped into @ Thejth centroid will be chosen as the solution with the minimum

corresponding codevectas, in C;. The codebook€r andC; are Frobenius norm(/trace{’i"’i‘]) and is given by
related such that the linear transformation to be assigned to the

) _ , o .
input vectorx will be given by the code-matrixiff T =XY (10)
t; = arg min [|x — t;||° (5) whereX andY are matrices that haveq. £ ="+l and{ék.}ﬁjU"“
t5E€Ct as their columns respectivelyy + denotes the pseudoinverse of

Note that the search in (5) has the same computational complexity Y » @nd||U:|| denotes the cardinality af;. o
as the usual VQ search. However, the use of transforms associated ~Experimental evidence shows that a good way of desighing

with the Vec’[ors{tj} allow us to trade-off a |arger memory (re_ fori = 1,...,Nr, isto update;; as the Euclidean centroid of the
quired for storing the transforms) for improved performance as it reconstructed vectos whose input vectorgy € Us;
will be shown below. 1 1
Once Ehe vectot; is determined, the associated linear trans- ti = m Z X = Tl Z Tiéx (11)
formationT = T; is employed to search the second stage by choos- kix €V kixic€U;
ing & to minimize o There is a simple analytical justification for this approach. In the
min llx — Té||* (6) case of high bit rate quantization or highly clustered input vectors,

for an input vectom, which hast; = arg ming;ec, ||xn — t;]1%,

q lexi ) h hin (6 be d the Euclidean distance betwegrandx, will be small due to (11).
ory gn comp ex!ty requirements t _e search in (_) can _e ON€yrthermore using the triangle inequality the Euclidean distance
by either generating the reconstruction vectors using matrix mul- betweenx

tiplication at the time of search, or storing pre-computed recon-
struction vectors. In the former case, the complexity is larger than lxn — Xnl| < ||xn — t;]] + ||t; — Xnl| 12)
MSVQ, while in the latter case the complexity is practically the
same as in MSVQ.

The quantized vector is given By= Té&. Depending on the mem-

andx, can be upper bounded as

The right hand side of (12) is expected to have a low valye-at,
because the first term is minimized by the chojce= ¢ and the
second term corresponds to the distance between a vector and its
centroid. This shows that by employing the sequential encoding
rule given by (5) we can obtain a low value for the upper bound on
the quantization error.

3. JOINT CODEBOOK OPTIMIZATION

In order to jointly optimize the codebooks, we use an iterative
sequential optimization. The algorithm iterates between optimiz-
ing linear transformation codebodk- and the associated} for a
given residual codeboa®. and optimizing the residual codeboo
for the given linear transformation codebook.

In order to sequentially optimize the codebooks, the input vec- Gjyen the fixed linear transformation codebook and the partition
tor space is partitioned with respect to the codebook whose entrieq/]., we will computec; for j = 1, ..., N, to minimize (3). Sac;
are being optimized. LeR; ; denote the set of input vectors whose || pe given by
assigned indices aidfor the codebookr(C.), and j for the code-

k 3.2. Design of the Residual Codebook
For a Given Linear Transformation Codebook

bookC,. GivenR; ;, the set of input vectors assigned to title ¢j = arg min Z [l — Twe|)” (13)
entry of the codebookr (C:) is given by © heev;
Nr The minimum norm solution of the above minimization is the cen-
Ui = U Ri; (7) troid equation for thgth centroid and computed as
j=1
o _ G =A'b (14)
and the set of vectors assigned to jtle entry of residual code-
book(, is where
Nt T1 X1
Vi= U R; ; (8) A= : b= : 15)
i=1 ’

whereN,. is the size of’, and Nt is the size of botl¢r and(; . vy X|iv;l



3.3. Joint Codebook Design

The main design algorithm can now be stated by using the centroidi
computations and the sequential encoding rule described in earlier
sections. The initialization starts with the codebdagkwhich is

initialized using the codebook splitting method on the training vec-

vectors with distortion exceeding 5 dB and 7 dB is shown in Ta-
ble 1. Table 2 shows the performance over the test set. The design
s done for various typical bit rates used in low bit rate speech
coders. As shown, the proposed technique has a better SD, and
less outliers than the two-stage MSVQ.

tors{xx }. ThenCr is initialized such that each code-matfik is

; o Rate SD 5dB and 7dB outliers (%)
an orthogonal matrix, an';t; is a constant vector for all The (bits) Proposed| MSVQ Proposed MSVQ
Leaskocn for thISIIS rtI?’have the_tr;ellr;l'n?_\t/)ett:tc;rs for tk:jetrr]t_a&dualtcoctie- 10=5+5 353 392 11371 3651 16.66] 5.29
et y‘g er“}'irr:‘a'tﬂyv'sl e [ 1155+6| 339 | 382 | 0.03 | 334 1551] 4.92
tr:eectcr)alinine ?/e)c/:to(ra:tﬁi arge assi c;1:d ?OC; i\?enegoc()je-srg;ltrixe Us‘ 1126+5 3.32 3.78 9.32 | 307 1499 4.71
ing this ne?/v set of vectord, T} x ? the resit?lual codeboak, is. 126+6 3.14 3.70 /80 | 267 14.06| 4.37

) b ke S 13=6+7 3.07 3.62 753 | 2.36 | 13.24 | 4.40
designed by codebook splitting. 13=7+6| 2.86 359 | 631 | 1.93] 12.76 | 4.14
Once the codebooks are initialized, the main design algorithm 14:7 - 2'79 3'51 5.85 1'87 11'94 3'90
performs the following steps: = : : : : : :
1. Partition the training set to obtai®; ;. Table 1: Design performance
2. Compute the overall distortion, if termination criterion is
satisfied then stop else continue. _
Rate SD 5dB and 7dB outliers (%)
3. Compute the optimum codeboGk using (10), update the (bits) | Proposed] MSVQ Proposed MSVQ
codebookC: using (11). 10=5+5| 3.55 392 | 11.47] 3.72]| 16.80] 5.23
4. Partition the training set to obtain a néty ;. 11=5+6 3.42 3.82 | 10.10| 3.47 | 15.35| 5.09
5. Compute the optimum codebogk using (14). 1126+5 3.37 3.79 9.77 | 3.22] 15.08] 501
12=6+6 3.18 3.70 8.10 | 2.79 | 13.93 | 4.46
6. Goto 1. 13=6+7 | 3.12 363 | 7.98 | 2.43| 1332 452
While steps 3 and 5 of this algorithm always decrease the over{ 13=7+6 | 2.95 3.60 | 6.84 | 219 12.74| 419
all distortion, the partitioning steps 1 and 4 may increase the dis{ 14=7+7 2.87 353 | 621 | 212| 11.95| 3.98

tortion due to the suboptimal sequential encoding rule. Hence,
the algorithm does not guarantee strict descent, however, in prac-
tice the distortion generally decreases. The termination criterion
adopted in this algorithm is to stop when the relative change in the
distortion is less than a given threshold.

1
4. EXPERIMENTAL RESULTS [t

In order to evaluate the performance of the proposed VQ technique
for spectral magnitude quantization, we compared this technique[2]
with a two stage MSVQ. The speech material used is sampled at
8kHz and consists of sentences spoken by male and female speak-
ers. The spectral vectors are extracted every 10 ms and normalized
by a gain factor. A set of 88064 vectors are used for training, 13
and another set of 22016 vectors are used for testing. All the vec-
tors have dimension 48 or smaller. Thus the distortion incurred
consists of quantization distortion only, since the modeling distor-
tion is zero. The objective performance is measured by using root
square spectral distortion (SD) in dB, which is defined as

N-1 Lp—1
SD = Yo\ 7 X (0logy T a9)
k=0 m=0

whereL,, is the dimension of the spectral magnitude vestoand
si[m] denotes thenth element of the vectoy.

The performance of the proposed and the multi-stage VQ over
the training set measured in terms of SD, and the percentage of

Table 2: Test performance
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