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ABSTRACT

This paper introduces a novel vector quantization (VQ) tech-
nique, wherein the quantized vector is obtained by applying a lin-
ear transformation selected from a first codebook to a codevector
selected from a second codebook. The transformation is selected
from a family of linear transformations, represented by a matrix
codebook. Vectors in the second codebook are called residual
codevectors. In order to avoid high complexity during the search
for the best linear transformation, each linear transformation is as-
signed a representative vector, such that the search can be done em-
ploying the representative vectors. The design algorithm is based
on joint optimization of the linear transformation and the residual
codebooks. It is shown that the proposed technique yields high
quality spectral magnitude quantizer with performance exceeding
that of multistage vector quantizer (MSVQ) of similar complexity
and bit rate.

1. INTRODUCTION

High quality spectral magnitude quantization is crucial to many
low bit rate speech coders employing a sinusoidal model [1] [2]
[3] [4]. The spectral magnitudes are obtained by sampling the
spectrum of either the speech or the LP residual at frequencies
corresponding to pitch harmonics. This procedure generates a
variable dimension vector since the number of pitch harmonics
changes in time.

In this paper, the variable dimension spectral vector is first
transformed into a fixed dimension vector, and then the fixed di-
mension vector is quantized efficiently using the proposed VQ
technique. The fixed dimension is chosen such that there is no
modeling distortion caused by transformation. The proposed VQ
approach reconstructs the input vector by applying a linear trans-
formation selected from a first codebook to a codevector selected
from a second codebook. The transformation is selected from a
family of linear transformations, represented by codebook of ma-
trices. Vectors in the second codebook are called residual codevec-
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tors. In order to avoid high complexity during the search for the
best linear transformation, each linear transformation is assigned a
representative vector, such that the search can be done employing
the representative vectors. The design algorithm is based on joint
optimization of the linear transformation and the residual code-
books. It is shown that the proposed technique yields high quality
spectral magnitude quantizer with performance exceeding that of
multistage vector quantizer (MSVQ) of similar complexity and bit
rate.

2. PROBLEM FORMULATION

Let x be an M-dimensional input vector. According to the pro-
posed approach, the quantized vectorx̂ is given by

x̂ = T̂ĉ (1)

whereT̂ represents the linear transformation matrix selected from
the matrix codebookCT and ĉ represents a residual codevector
which is a member of the residual codebookCr.

Using the mean square error (MSE) distortion measure, the
average distortionD on the set of vectorsfxkg of sizeN is

D =
1

N

N�1X
k=0

kxk � x̂kk
2 (2)

or, based on (1):

D =
1

N

N�1X
k=0

kxk � T̂kĉkk
2 (3)

whereT̂k is the transformation matrix and̂ck is the residual code-
vector corresponding to the input vectorxk.

In this work, the variable dimension spectral magnitudes are
transformed into a fixed dimension (M=48) input vectors, using
discrete cosine transform (DCT). The objective here is to design
the codebooksCT , Cr that minimize (3) and to develop an efficient
coding rule for this VQ technique.

2.1. Encoding/Decoding

Given the linear transformation codebookCT and the residual code-
bookCr, the optimal pair(T̂; ĉ) for encoding the vectorx is sim-



ply given by

(T̂; ĉ) = arg min
T̂2CT ;ĉ2Cr

kx� T̂ĉk2 (4)

The minimization required in (4) is computationally intensive
if an exhaustive search in both codebooks is employed. To avoid
high search complexity, a sequential search is employed whereby
the linear transformationT is determined first.

To simplify the search of the linear transformation codebook
CT , we map this codebook into a set of codevectorsftjg stored
in Ct, so that theith matrix of CT namely,Ti, is mapped into a
corresponding codevector,ti in Ct. The codebooksCT andCt are
related such that the linear transformation to be assigned to the
input vectorx will be given by the code-matrixi iff

ti = arg min
tj2Ct

kx� tjk
2 (5)

Note that the search in (5) has the same computational complexity
as the usual VQ search. However, the use of transforms associated
with the vectorsftjg allow us to trade-off a larger memory (re-
quired for storing the transforms) for improved performance as it
will be shown below.

Once the vectorti is determined, the associated linear trans-
formationT̂ = Ti is employed to search the second stage by choos-
ing ĉ to minimize

min
ĉ2Cr

kx� T̂ĉk2 (6)

The quantized vector is given bŷx = T̂ĉ. Depending on the mem-
ory and complexity requirements the search in (6) can be done
by either generating the reconstruction vectors using matrix mul-
tiplication at the time of search, or storing pre-computed recon-
struction vectors. In the former case, the complexity is larger than
MSVQ, while in the latter case the complexity is practically the
same as in MSVQ.

3. JOINT CODEBOOK OPTIMIZATION

In order to jointly optimize the codebooks, we use an iterative
sequential optimization. The algorithm iterates between optimiz-
ing linear transformation codebookCT and the associatedCt for a
given residual codebookCr and optimizing the residual codebook
for the given linear transformation codebook.

In order to sequentially optimize the codebooks, the input vec-
tor space is partitioned with respect to the codebook whose entries
are being optimized. LetRi;j denote the set of input vectors whose
assigned indices arei for the codebookCT (Ct), and j for the code-
bookCr. GivenRi;j , the set of input vectors assigned to theith
entry of the codebookCT (Ct) is given by

Ui =

Nr[
j=1

Ri;j (7)

and the set of vectors assigned to thejth entry of residual code-
bookCr is

Vj =

NT[
i=1

Ri;j (8)

whereNr is the size ofCr andNT is the size of bothCT andCt .

3.1. Design of the Linear Transformation Codebook
For a Given Residual Codebook

Given the fixed residual codebook and the partitionUi, our objec-
tive is to computeTi for i = 1; : : : ; NT to minimize (3). In other
words,Ti is obtained as the solution of the optimization problem

Ti = argmin
T̂

X
k:xk2Ui

kxk � T̂ĉkk
2 (9)

The solution of the above minimization problem may not be unique.
The ith centroid will be chosen as the solution with the minimum
Frobenius norm (

p
trace[T̂0T̂]) and is given by

Ti = XY
+ (10)

whereX andY are matrices that havefxkg
k=kUik
k=1

andfĉkg
k=kUik
k=1

as their columns respectively.Y+ denotes the pseudoinverse of
Y, andkUik denotes the cardinality ofUi.

Experimental evidence shows that a good way of designingti

for i = 1; : : : ; NT , is to updateti as the Euclidean centroid of the
reconstructed vectorŝxk whose input vectorsxk 2 Ui;

ti =
1

kUik

X
k:xk2Ui

x̂k =
1

kUik

X
k:xk2Ui

Tiĉk (11)

There is a simple analytical justification for this approach. In the
case of high bit rate quantization or highly clustered input vectors,
for an input vectorxn which hasti = argmintj2Ct kxn � tjk

2,
the Euclidean distance betweenti andx̂n will be small due to (11).
Furthermore using the triangle inequality the Euclidean distance
betweenxn andx̂n can be upper bounded as

kxn � x̂nk � kxn � tjk+ ktj � x̂nk (12)

The right hand side of (12) is expected to have a low value atj = i,
because the first term is minimized by the choicej = i and the
second term corresponds to the distance between a vector and its
centroid. This shows that by employing the sequential encoding
rule given by (5) we can obtain a low value for the upper bound on
the quantization error.

3.2. Design of the Residual Codebook
For a Given Linear Transformation Codebook

Given the fixed linear transformation codebook and the partition
Vj , we will computecj for j = 1; : : : ; Nr to minimize (3). Socj
will be given by

cj = argmin
ĉ

X
k:xk2Vj

kxk � T̂kĉk
2 (13)

The minimum norm solution of the above minimization is the cen-
troid equation for thejth centroid and computed as

cj = A
+
b (14)

where

A =

2
64

T1

...
TkVjk

3
75b =

2
64

x1

...
xkVjk

3
75 (15)



3.3. Joint Codebook Design

The main design algorithm can now be stated by using the centroid
computations and the sequential encoding rule described in earlier
sections. The initialization starts with the codebookCt which is
initialized using the codebook splitting method on the training vec-
torsfxkg. ThenCT is initialized such that each code-matrixTi is
an orthogonal matrix, andT0

iti is a constant vector for alli. The
reason for this is to have the training vectors for the residual code-
bookCr, namelyfT0

kxkg, mainly distributed around this constant
vector, thereby decreasing the volume of the region spanned by
the training vectors that are assigned to a given code-matrix. Us-
ing this new set of vectors,fT0

kxkg, the residual codebookCr is
designed by codebook splitting.

Once the codebooks are initialized, the main design algorithm
performs the following steps:

1. Partition the training set to obtainRi;j .

2. Compute the overall distortion, if termination criterion is
satisfied then stop else continue.

3. Compute the optimum codebookCT using (10), update the
codebookCt using (11).

4. Partition the training set to obtain a newRi;j .

5. Compute the optimum codebookCr using (14).

6. Go to 1.

While steps 3 and 5 of this algorithm always decrease the over-
all distortion, the partitioning steps 1 and 4 may increase the dis-
tortion due to the suboptimal sequential encoding rule. Hence,
the algorithm does not guarantee strict descent, however, in prac-
tice the distortion generally decreases. The termination criterion
adopted in this algorithm is to stop when the relative change in the
distortion is less than a given threshold.

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed VQ technique
for spectral magnitude quantization, we compared this technique
with a two stage MSVQ. The speech material used is sampled at
8kHz and consists of sentences spoken by male and female speak-
ers. The spectral vectors are extracted every 10 ms and normalized
by a gain factor. A set of 88064 vectors are used for training,
and another set of 22016 vectors are used for testing. All the vec-
tors have dimension 48 or smaller. Thus the distortion incurred
consists of quantization distortion only, since the modeling distor-
tion is zero. The objective performance is measured by using root
square spectral distortion (SD) in dB, which is defined as

SD =
1

N

N�1X
k=0

vuut 1

Lk

Lk�1X
m=0

(10 log10
s2k[m]

ŝ2k[m]
)2 (16)

whereLk is the dimension of the spectral magnitude vectorsk and
sk[m] denotes themth element of the vectorsk.

The performance of the proposed and the multi-stage VQ over
the training set measured in terms of SD, and the percentage of

vectors with distortion exceeding 5 dB and 7 dB is shown in Ta-
ble 1. Table 2 shows the performance over the test set. The design
is done for various typical bit rates used in low bit rate speech
coders. As shown, the proposed technique has a better SD, and
less outliers than the two-stage MSVQ.

Rate SD 5dB and 7dB outliers (%)
(bits) Proposed MSVQ Proposed MSVQ

10=5+5 3.53 3.92 11.37 3.65 16.66 5.29
11=5+6 3.39 3.82 9.93 3.34 15.51 4.92
11=6+5 3.32 3.78 9.32 3.07 14.99 4.71
12=6+6 3.14 3.70 7.80 2.67 14.06 4.37
13=6+7 3.07 3.62 7.53 2.36 13.24 4.40
13=7+6 2.86 3.59 6.31 1.93 12.76 4.14
14=7+7 2.79 3.51 5.85 1.87 11.94 3.90

Table 1: Design performance

Rate SD 5dB and 7dB outliers (%)
(bits) Proposed MSVQ Proposed MSVQ

10=5+5 3.55 3.92 11.47 3.72 16.80 5.23
11=5+6 3.42 3.82 10.10 3.47 15.35 5.09
11=6+5 3.37 3.79 9.77 3.22 15.08 5.01
12=6+6 3.18 3.70 8.10 2.79 13.93 4.46
13=6+7 3.12 3.63 7.98 2.43 13.32 4.52
13=7+6 2.95 3.60 6.84 2.19 12.74 4.19
14=7+7 2.87 3.53 6.21 2.12 11.95 3.98

Table 2: Test performance
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