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Enhanced Waveform Interpolative Coding
at Low Bit-Rate
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Abstract—This paper presents a high quality enhanced wave-
form interpolative (EWI) speech coder at low bit-rate. The system
incorporates novel features such as optimization of the slowly
evolving waveform (SEW) for interpolation, analysis-by-synthesis
(AbS) vector quantization (VQ) of the SEW dispersion phase,
dual-predictive AbS quantization of the SEW, efficient parameter-
ization of the rapidly-evolving waveform (REW) magnitude, and
VQ of the REW parameter, a special pitch search for transitions,
and switched-predictive analysis-by-synthesis gain VQ. Subjective
tests indicate that the 2.8 kb/s EWI coder’s quality exceeds that
of G.723.1 at 5.3 kb/s, and it is slightly better than that of G.723.1
at 6.3 kb/s.

Index Terms—Analysis-by-synthesis, phase dispersion, speech
coding, speech compression, vector quantization, waveform
interpolation, waveform interpolative coding.

I. INTRODUCTION

I N RECENT years, there has been increasing interest in
achieving toll-quality speech coding at rates of 4 kb/s

and below. Currently, there is an ongoing 4 kb/s standardiza-
tion effort conducted by the ITU-T. The expanding variety
of emerging applications for speech coding, such as third
generation wireless networks and Low Earth Orbit (LEO)
systems, is motivating increased research efforts. The speech
quality produced by waveform coders such as code-excited
linear prediction (CELP) coders [1] degrades rapidly at
rates below 5 kb/s. On the other hand, parametric coders
such as the waveform-interpolative (WI) coder [8]–[20], the
sinusoidal-transform coder (STC) [2], the multiband-excita-
tion (MBE) coder [3], the mixed-excitation linear predictive
(MELP) vocoder [4], [5], and the harmonic-stochastic excita-
tion (HSX) coder [6] produce good quality at low rates, but
they do not achieve toll quality. This is largely due to the lack of
robustness of speech parameter estimation, which is commonly
performed in open-loop, and to inadequate modeling of nonsta-
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tionary speech segments. In this work we propose a paradigm
for WI coding that incorporates analysis-by-synthesis (AbS)
for parameter estimation, offers higher temporal and spectral
resolution for the rapidly-evolving waveform (REW), and more
efficient quantization of the slowly-evolving waveform (SEW).

The WI coders [13]–[20] use nonideal low-pass filters for
downsampling and upsampling of the SEW. We describe a novel
AbS SEW quantization scheme, which takes the nonideal filters
into consideration. An improved match between reconstructed
and original SEW spectra is obtained, most notably in transition
segments of speech.

Commonly in WI coding, the similarity between successive
REW magnitudes is exploited by downsampling and interpola-
tion and by bit allocation that constrains similarity [13]. In our
previous enhanced waveform-interpolative (EWI) coder [22],
[23], the REW magnitude was quantized on a waveform by
waveform basis, and with an excessive number of bits—more
than is perceptually required. Here we propose a novel para-
metric representation of the REW magnitude and an efficient
paradigm for AbS predictive vector quantization of the REW
parameter sequence. The new method achieves a substantial re-
duction in the REW bit-rate.

In low bit-rate WI coding, the relation between the SEW and
the REW magnitudes was exploited by computing the magni-
tude of one as the unity complement of the other [14], [17]–[20].
Also, since the sequence of SEW spectrum evolves slowly, suc-
cessive SEWs exhibit similarity, offering opportunities for re-
dundancy removal. Additional forms of redundancy that may
be exploited for coding efficiency are 1) for a fixed SEW/REW
decomposition filter, the mean SEW magnitude increases with
the pitch period and 2) the similarity between successive SEWs,
also increases with the pitch period. These phenomena are due
to the fact that, for uniformly extracted waveforms, the overlap
between successive waveforms increases with the pitch period.
In this work, we introduce a novel “dual-predictive” AbS para-
digm for quantizing the SEW magnitude that optimally exploits
the information about the current quantized REW, the past quan-
tized SEW, and the pitch, in order to estimate the current SEW.

In parametric coders the phase information is commonly not
transmitted, and this is for two reasons: first, the phase is of sec-
ondary perceptual significance; and second, no efficient phase
quantization scheme is known. WI coders [8]–[20] typically use
a fixed phase vector for the SEW, for example, in [14], [19],
a fixed male speaker extracted phase was used. On the other
hand, waveform coders such as CELP [1], by directly quan-
tizing the waveform, implicitly allocate an excessive number
of bits to the phase information—more than is perceptually re-
quired. In the past [31]–[34], phase modeling and quantization
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was investigated. In [32] a random phase codebook was used
at a relatively high number of phase quantization bits. In [33],
[34], a noncausal all-pole filter’s phase model was discussed,
but quantization was not optimized. We have observed that such
a model is quite inadequate in matching the physiological exci-
tation’s phase, although occasionally it does provide a reason-
able match. In addition, none of the above methods have in-
corporated perceptual weighting. Recently [21], we proposed a
novel, efficient AbS VQ encoding of the dispersion phase of the
excitation signal to enhance the performance of the WI coder at
a low bit-rate, which can be used for parametric coders as well
as for waveform coders. The EWI coder presented here employs
this scheme, which incorporates perceptual weighting and does
not require any phase unwrapping.

Pitch accuracy is crucial for high quality reproduced speech
in WI coders. We introduce a novel pitch search technique based
on varying segment boundaries; it allows for locking onto the
most probable pitch period during transitions or other segments
with rapidly varying pitch.

Commonly in speech coding the gain sequence is downsam-
pled and interpolated. As a result it is often smeared during plo-
sives and onsets. In the past, this problem was addressed by
employing a special mechanism that mimicked the gain char-
acteristics [14]. To alleviate this problem, we propose a novel
switched-predictive AbS gain VQ scheme based on temporal
weighting.

This paper is organized as follows. Section II describes the
WI coder. In Section III we explain the AbS SEW optimization.
The dispersion phase quantizer is discussed in Section IV. In
Section V we explain the REW parameterization, and the cor-
responding AbS VQ. The dual predictive SEW AbS VQ and its
performance are discussed in Section VI. Section VII describes
the pitch search. In Section VIII we present the switched-pre-
dictive AbS gain VQ. The bit allocation is given in Section IX.
Subjective results are reported in Section X. Finally, we sum-
marize our work.

II. DESCRIPTION OF THE WAVEFORM INTERPOLATIVE CODER

A. Introduction to Waveform Interpolation

During voiced speech, which is quasiperiodic, one can ob-
serve the underlying process of evolving shape of successive
pitch cycles. A continuously evolving sequence of pitch cycle
waveforms can be generated from a continuous-time signal, ei-
ther from the linear prediction residual or from the speech wave-
form directly. For coding purposes, one may extract a subse-
quence of these waveforms, and apply quantization to it. At the
decoder, following inverse quantization, speech synthesis can be
performed by interpolating missing waveforms. Such a process
is the essence of waveform interpolative coding [8]–[20].

Speech segments typically contain both voiced and unvoiced
attributes. The different perceived character of the voiced and
unvoiced components [27] suggests a separation of the compo-
nents, and applying distinct perceptually based coding to them
[12]–[20].

B. Definitions

Given a continuous linear prediction residual (or speech)
signal, , and its associated instantaneous pitch period con-
tour, , a characteristic waveform (CW) [8]–[20], ,
may be generated by extracting pitch cycles at an infinitely
high rate, normalizing their length to , and aligning them
sequentially by a cyclical shift. The differential alignment
phase shift, , is given by

(1)

Therefore, the temporal accumulated phase shift is equal to

(2)

where is the initial phase shift at time . The CW is a two-
dimensional (2-D) surface which is defined by

(3)

where wraps over the range , and is defined by

modulo (4)

The CW is a periodic function of the parameter , with a period
. The residual (or speech) signal may be generated from the

CW by calculating its value along the phase shift contour

(5)

The WI coder based on this 2-D function is conceptually similar
to the pitch synchronous transform coder [7].

C. Waveform Interpolative Coder Description

The EWI coder is based on the WI coding model [11]–[14]. In
this model, the CW is decomposed into two components called
SEW and REW. The SEW, which is computed by low-pass fil-
tering the 2-D CW surface along the time axis (also known as the
evolutionary axis), contains most of the voiced speech attribute.
The SEW is coded at low temporal resolution, high spectral res-
olution, and using spectrally weighted distortion measure. The
REW, which is the complementary high-pass component, repre-
sents primarily the unvoiced speech attribute. The REW is coded
at high temporal resolution, low spectral resolution, and by ex-
ploiting spectral and temporal masking.

The EWI encoder is illustrated in Fig. 1. The LPC analysis,
and quantization is performed every 20 ms frame, and interpo-
lated values are used for each of the ten waveforms in the frame.
The input speech is then passed through the resulting whitening
filter to produce the residual signal. A search for the pitch pe-
riod is performed and the pitch is quantized every 10 ms, and
is then interpolated. The interpolated pitch values are used for
pitch cycle waveform extraction, which is performed at a reg-
ular rate (every 2 ms). The rate must be higher then the maximal
pitch frequency in order to prevent aliasing along the time axis
[14], [18]. The extracted waveforms are then power normalized,
and sequentially aligned, to form a discrete-time CW, which is
represented by a Fourier series (FS). The Fourier coefficients
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Fig. 1. Block diagram of the EWI encoder.

Fig. 2. Block diagram of the EWI decoder.

(FCs) are obtained by pitch-synchronous discrete Fourier trans-
form (DFT). The frequency domain representation is used in
order to benefit from appropriate perceptually motivated coding
paradigms for the magnitude, and the phase. The CW is then
low-pass filtered along the time axis, to produce the SEW. The
REW is computed as the complementary high-pass component,
and is then quantized. The SEW is downsampled, and then quan-
tized every 20 ms. Finally, a local decoder is used to reconstruct
the speech, then the encoder adjusts the gain to equate the re-
constructed speech waveform energy to that of the input speech
waveform, and quantizes the resultant gain.

The EWI decoder is illustrated in Fig. 2. The REW and the
SEW are decoded, and an interpolated SEW is computed each
2 ms. The REW and SEW are phase adjusted to achieve ade-
quate voicing level and to benefit from temporal masking, and
then added together. The resulting waveform is then power-nor-

malized, and multiplied by the respective quantized gain. The
pitch is decoded, and interpolated, and is then used for com-
puting the phase contour using (2). The reconstructed residual is
computed by continuous waveform interpolation, which is per-
formed by computing the Fourier series along the phase con-
tour followed by overlap-and-add. Over the interpolation in-
terval , the continuous reconstructed excitation
signal, , is given by

(6)

where and are the reconstructed CW at the
interval beginning and ending, respectively, and is some
increasing interpolation function in the range .
The quantized LPC coefficients are interpolated, and are then
used for the synthesis filter. Finally, the reconstructed speech is
obtained by passing the reconstructed residual through the syn-
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Fig. 3. Block diagram of the AbS SEW vector quantization.

thesis filter. For low rate coding, it is beneficial to use a formant
adaptive postfilter [28]. In WI coding the postfilter enhances the
quantized speech quality by reducing the audibility of the non-
periodic speech component around the formants. Such compo-
nent is mostly due to the REW which is still somehow related to
the SEW and may not always be regarded as independent noise.

Many speech coding schemes use voiced/unvoiced classifica-
tion with separate coding of each type of sound. Such schemes
may suffer severe quality loss whenever classification error is
made, which causes the coder to apply coding method that is
inappropriate to the coded speech sound. One of the important
advantages of the WI coding system is that it is universally ap-
plied to all speech sounds, and is therefore more robust than
classification based coding scheme.

III. SEW OPTIMIZATION

Most WI coders [10]–[18] use nonideal low-pass filters for
downsampling and upsampling of the SEW. These filters intro-
duce aliasing and mirroring distortion, even when no quantiza-
tion is applied. We propose, instead, a novel AbS SEW quan-
tization scheme, illustrated in Fig. 3, which takes the nonideal
interpolation filters into consideration and optimizes the SEW
accordingly, however some aliasing may already exist (due to
nonideal anti-aliasing filters) and this will not be eliminated by
the AbS quantization scheme. The input speech is analyzed and
LPC parameters are extracted, quantized and interpolated, and
an LPC whitening filter is obtained. Then the speech is passed
through the resulting whitening filter to produce the residual
signal. In each frame SEWs are extracted from the residual
with look-ahead waveforms. Each waveform is represented
by a vector of FCs . The local decoder at the encoder re-
constructs SEWs, , by interpolating between the

Fig. 4. Example for the improved interpolation by SEW optimization during
nonstationary speech segment.

quantized SEW at the previous frame, , to the current frame
quantized SEW, . The interpolated SEW vectors are given by

(7)

Assuming and the LPC coefficients are given, the encoder’s
task is to find the quantized vector such that the accumu-
lated weighted distortion between original and reconstructed
waveform sequences, denoted by , is minimized. Since the
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effect of the linear interpolation LPF is taken into account in
the proposed scheme, a true interpolated waveform (synthesis)
is incorporated in the analysis process, unlike the conventional
open-loop WI coders [10]–[18] in which only one waveform,
namely , is used for the quantization. Consider the accumu-
lated weighted distortion, , between the input SEW FCs
vectors, , and the quantized and interpolated vectors, ,
given by

(8)

where
number of waveforms per frame;
number of look-ahead waveforms;
diagonal matrix whose elements, , are the spectral
values of the combined spectral-weighting and syn-
thesis filters at the th harmonic given by

(9)

where
pitch period;
number of harmonics;
gain;

and input and the quantized LPC polynomials,
respectively.

The spectral weighting parameters satisfy . It
can be shown that the accumulated distortion in (8) is equal to
the sum of two components, a modeling distortion and a quan-
tization distortion

(10)

where the quantization distortion is given by

(11)

where the optimal vector, , (which minimizes the mod-
eling distortion) is given by

(12)
and the respective weighting matrix is given by

(13)

Therefore, VQ with the accumulated distortion of (8) can be
simplified by using the distortion of (11), and

(14)

An improved match between reconstructed and original SEW
is obtained, most notably in the transitions. Fig. 4 illustrates
the improved waveform matching obtained for a nonstationary
speech segment by interpolating the optimized SEW.

IV. DISPERSION PHASE QUANTIZATION

The dispersion-phase quantization scheme [21]–[23] is illus-
trated in Fig. 5. A pitch cycle that is extracted from the SEW is
applied as an input to the system, and is cyclically shifted so that
its pulse is located at position zero. Let its FC vector be denoted
by . After quantization, the components of the quantized mag-
nitude vector, , are multiplied by the exponential of the quan-
tized phases, , to yield the quantized waveform FC vector,
, which is subtracted from the input FC vector to produce the

error FC vector. The error FC vector is then transformed to the
perceptually-weighted frequency domain by weighting it by the
combined synthesis and weighting filter . The en-
coder searches for the phase that minimizes the energy of the
perceptually weighted error, allowing a fine tuning of the cyclic
shift of the input waveform during the search, to eliminate any
residual phase shift between the input waveform and the quan-
tized waveform. Phase dispersion quantization aims to improve
waveform matching. Efficient AbS quantization can be obtained
by using the perceptually weighted distortion

(15)

where is the weighted input SEW prototype and
is the quantized and weighted SEW prototype. It can be shown
[21] that the above distortion is equivalent to

(16)

The magnitude is perceptually more significant than the phase
[26] and should therefore be quantized first. Furthermore, if the
phase were quantized first, the very limited bit allocation avail-
able for the phase would lead to an excessively degraded spectral
matching of the magnitude in favor of a somewhat improved,
but less important, matching of the waveform. For this distor-
tion measure, the quantized phase vector is given by [21]–[23]

(17)

where
running phase codebook index;
respective diagonal phase exponent matrix;
quantized magnitude vector.

The AbS search for phase quantization is based on evaluating
(17) for each candidate phase codevector. Since only trigono-
metric functions of the phase candidates are used (via complex
exponentials), only phase values modulo are relevant, and
therefore phase unwrapping is avoided. The EWI coder uses the
optimized SEW, , and the optimized weighting, ,
for the AbS phase quantization.

A. Phase Centroid Equations

We will now describe the training of the phase codebook.
Suppose is the set of SEW
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training vectors used for the design of the phase VQ, where
is the cardinality of the set , that is, the number of elements in

. The average global distortion measure for the quantization
of the training set is

(18)

where , and are the th FC of the th input and the
quantized SEWs, respectively. The th optimal partition cell sat-
isfies

for all (19)

For a given partition , the centroid
equation [29] of the th coefficient’s phase, for the th cluster,
which minimizes the global distortion (18), is given by

-

(20)

B. Variable Dimension Vector Quantization

The phase vector’s dimension depends on the pitch period
and, therefore, a variable dimension VQ has been implemented.
In our WI coder, the possible pitch period value was divided into
several ranges, and for each range of pitch period a codebook
was designed such that all vectors of dimension smaller than the
largest pitch period in that range are zero padded beyond their
highest element. Pitch changes over time cause the quantizer
to switch among the pitch-range selected codebooks. In order
to achieve smooth phase variations whenever such a switch oc-
curs, overlapped training clusters were used and similar initial
conditions were selected for each codebook. This design method
does not guarantee smoothness, i.e., for a slight change in pitch
that causes a switch in codebooks, the quantized vector could
change substantially. However, significant quality improvement
was obtained with the procedure. We believe such smoothness
may be guaranteed by including some heuristic rules in the en-
coding process.

C. Objective Results

The segmental weighted signal-to-noise ratio (SNR) of the
phase quantizer is illustrated in Fig. 6. The segmental SNR was
calculated by averaging the SNR of the extracted waveforms.
For each waveform, the SNR was computed using the quan-
tized phase and nonquantized magnitude. The proposed system
achieves approximately 14 dB SNR for as few as six bits for
nonfiltered speech, and nearly 10 dB for modified intermediate
reference system (M-IRS) [35] filtered speech.

Fig. 5. Block diagram of the AbS dispersion phase vector quantization.

Fig. 6. Segmental weighted SNR of the phase VQ versus the number of bits,
for M-IRS and for nonfiltered (flat) speech.

Fig. 7. Results of subjective A/B test for comparison between the four-bit
phase VQ, and male extracted fixed phase.

D. Subjective Results

Recent WI coders have used a fixed dispersion phase ex-
tracted from male speakers [14], [19]. We have conducted a sub-
jective A/B test to compare our dispersion phase VQ, using only
four bits, to a male-extracted dispersion phase. The test data in-
cluded 16 M-IRS speech sentences, eight of which are of female
speakers, and eight of male speakers. During the test, all pairs
of file were played twice in alternating order, and the listeners
could vote for either of the systems, or for no preference. The
speech material was synthesized using our WI system in which
only the dispersion phase was quantized every 20 ms. Twenty
one listeners participated in the test. The test results, illustrated
in Fig. 7, show improvement in speech quality by quantizing the
phase with a four-bit VQ. The improvement is larger for female
speakers than for male. This may be due to the fact that for fe-
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male speech there is a larger number of bits per vector sample,
resulting in better waveform matching which is more perceiv-
able particularly during transitions.

The codebook design for the dispersion-phase quantization
involves a tradeoff between robustness in terms of smooth phase
variations and waveform matching. A locally optimized code-
book for each pitch value may improve the waveform matching
on the average, but will occasionally yield abrupt and excessive
changes that can cause temporal artifacts.

V. PARAMETRIC REW QUANTIZATION

Efficient REW quantization can benefit from two observa-
tions [25]: 1) the REW magnitude is typically an increasing
function of frequency, which suggests that an efficient para-
metric representation may be used and 2) one can observe
similarity between successive REW magnitude spectra, which
suggests that employing predictive VQ on a group of adjacent
REWs may yield useful coding gains. The next four sections
introduce the REW parametric representation and the associ-
ated VQ technique.

A. REW Parameterization

Direct quantization of the REW magnitude is a variable
dimension quantization problem, which may result in spending
bits and computational effort on perceptually irrelevant in-
formation. A simple and practical way to obtain a reduced,
and fixed, dimension representation of the REW is with a
linear combination of basis functions, such as orthonormal
polynomials [18]–[20]. Such a representation usually produces
a smoother REW magnitude, and improves the perceptual
quality. Suppose the REW magnitude, , is represented by
a linear combination of orthonormal functions

(21)

where is the angular frequency, and is the representation
order. The REW magnitude is typically an increasing function of
frequency, which can be coarsely quantized with a small number
of bits per waveform without significant perceptual degrada-
tion. Therefore, it may be advantageous to represent the REW
magnitude in a simple, but perceptually relevant manner. Con-
sequently we model the REW by the following parametric rep-

resentation,

(22)
where is a parametric vector
of coefficients within the representation model subspace, and

is the “unvoicing” parameter which is zero for a fully voiced

spectrum, and one for a fully unvoiced spectrum. Thus,
defines a 2-D surface whose cross sections for each value of
give a particular REW magnitude spectrum, which is defined
merely by specifying a scalar parameter value.

Fig. 8. REW parametric representation R (!; �).

B. Piecewise Linear REW Representation

In order to have a simple representation that is computation-
ally efficient and avoids excessive memory requirements, we
model the 2-D surface by a piecewise linear parametric repre-
sentation. Therefore, we introduce a set of uniformly spaced

spectra, , as shown in Fig. 8. (Such a set of
functions is similar to the hand-tuned REW codebook in [19]
and [20].) Then the parametric surface is defined by linear in-
terpolation according to

(23)

Because this representation is linear, the coefficients of

are linear combinations of the coefficients of and

. Hence,

(24)

where is the coefficient vector of the th REW magnitude
representation

(25)

C. REW Modeling

1) Nonweighted Distortion: Suppose for a REW magnitude,
, represented by some coefficient vector, , we search for

the parameter value, , in , whose respective
representation vector, , minimizes the mean squared error
(MSE) distortion between the two spectra

(26)

From orthonormality, the distortion is equal to
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(27)

The optimal interpolation factor that minimizes the MSE is

(28)

and the respective optimal parameter value, which is a contin-
uous variable between zero and one, is given by

(29)

This result allows a rapid search for the best unvoicing param-
eter value needed to transform the coefficient vector to a scalar
parameter, for encoding or for VQ design.

2) Weighted Distortion: Commonly in speech coding, the
magnitude is quantized using a weighted distortion measure.
In this case, the weighted distortion between the input and the
parametric representation modeled spectra is equal to

(30)

where is the weighted correlation matrix of the or-
thonormal functions, its elements are

(31)

where is the input coefficient vector and is the modeled
parametric coefficient vector. The optimal parameter that mini-
mizes (30) is given by

(32)

and the respective optimal parameter value is computed using
(29). Alternatively, in order to eliminate using the matrix ,
and to benefit from the orthonormal function simplification,
given in (27), the scalar product may be redefined to incor-
porate the time-varying spectral weighting. The respective or-
thonormal basis functions then satisfy

(33)

where denotes the Kroneker delta. The respective pa-
rameter vector is given by

(34)

where is an th dimensional
vector of time-varying orthonormal functions.

D. REW Quantization

1) Full Complexity Spectral Quantization Scheme: A novel
AbS REW parameter VQ paradigm is illustrated in Fig. 9. An
excitation vector is selected from
the VQ codebook and is fed through a synthesis filter to ob-
tain a parameter vector (synthesized quantized) which is

Fig. 9. REW parametric representation AbS VQ.

Fig. 10. REW parametric representation AbS VQ.

Fig. 11. REW parametric representation simplified weighted AbS VQ.

then mapped to quantized a representation coefficient vectors
. This is compared with a sequence of input represen-

tation coefficient vectors and each is spectrally weighted.
Each spectrally weighted error is then temporally weighted, and
a distortion measure is obtained. A search through all candidate
excitation vectors determines an optimal choice. The synthesis
filter in Fig. 9 can be viewed as a first order predictor in a feed-
back loop. By allowing the value of the predictor parameter to
change, it becomes a “switched-predictor” scheme. Switched-
prediction is introduced to allow for different levels of REW
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parameter correlation. The scheme incorporates both spectral
weighting and temporal weighting. The spectral weighting is
used for the distortion between each pair of input and quantized
spectra. In order to improve SEW/REW mixing, particularly in
mixed voiced and unvoiced speech segments, and to increase
speech crispness, especially for plosives and onsets, temporal
weighting is incorporated in the AbS REW VQ. The temporal
weighting is a monotonic function of the temporal gain. Two
codebooks are used, one corresponding to each of two predictor
coefficients, and . The quantization target is an -di-
mensional vector of REW spectra. Each REW spectrum is rep-
resented by a vector of basis function coefficients denoted by

. The search for the minimal weighted mean squared error
(WMSE) is performed over all the vectors, , of the two
codebooks for . The quantized REW function coeffi-
cients vector, , is a function of the quantized param-

eter , which is obtained by passing the quantized vector,
, through the synthesis filter using the coefficient for

, or . The weighted distortion between each pair of input
and quantized REW spectra is calculated. The total distortion is
a temporally-weighted sum of the spectrally weighted dis-
tortions. Since the predictor coefficients are known, direct VQ
can be used to simplify the computations. For a piecewise linear
parametric REW representation, a substantial simplification of
the search computations may be obtained by interpolating the
distortion between the representation spectra set.

2) Simplified Parametric Quantization Scheme: The above
scheme maps each quantized parameter to a coefficient vector,
which is used to compute the spectral distortion. To reduce com-
plexity, such a mapping, and spectral distortion computation
may be eliminated by using the simplified scheme described

below. For a high rate, and a smooth representation surface
, the total distortion is equal to the sum of a modeling dis-

tortion and a quantization distortion

(35)

The quantization distortion is related to the quantized parameter
by

(36)

which, for the piecewise linear representation case, is equal to

(37)

where

(38)

The quantization distortion is linearly related to the REW pa-
rameter squared quantization error, , and there-
fore justifies direct VQ of the REW parameter.

a) Simplified scheme, nonweighted distortion: The
encoder maps the REW magnitude to an unvoicing parameter,
and then quantizes the parameter by AbS VQ, as illustrated
in Fig. 10. Initially, the magnitudes of the REWs in the
frame are mapped to coefficient vectors, . Then,
for each coefficient vector, a search is performed to find the
optimal representation parameter, , using (29), to form
an -dimensional parameter vector for the current frame,

. Finally, the parameter vector is encoded

by AbS VQ. The decoded spectra, , are
obtained from the quantized parameter vector, ,
using (23). This scheme allows for higher temporal as well as
spectral REW resolution, since no downsampling is performed,
and the continuous parameter is vector quantized in AbS.

b) Simplified scheme, weighted distortion: We may
improve the quantization scheme to incorporate spectral and
temporal weightings, as illustrated in Fig. 11. The REW
parameter vector is first mapped to a REW parameter by
minimizing a distortion, which is weighted by the coefficient
spectral weighting matrix , as described above. Then, the
resulting REW parameter is used to compute a weighting,

, which we choose to be the spectral sensitivity to the
REW parameter squared quantization error, ,
given by

(39)

For the piecewise linear representation case it is equal to

(40)

This derivative can be computed off line. Additionally, for the
temporal weighting, a monotonic nonlinear function of the gain,
denoted by , is used to give relatively large weight to
waveforms with larger gain values. The AbS REW parameter
quantization is computed by minimizing the combined spec-
trally and temporally weighted distortion

(41)

The weighted distortion scheme improves the reconstructed
speech quality, most notably in mixed voiced and unvoiced
speech segments. This may be explained by an improvement in
REW/SEW mixing.
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VI. DUAL PREDICTIVE SEW OPTIMIZATION

Fig. 12 illustrates a dual predictive SEW AbS VQ scheme
which uses two observables: 1) the quantized REW and 2) the
past quantized SEW, to jointly predict the current SEW. Al-
though we refer to the operator on each observable as a “pre-
dictor,” in fact both are components of a single optimized es-
timator. The SEW and the REW are complex random vectors,
and their sum is a residual vector having elements whose mag-
nitudes have a mean value of unity. In low bit-rate WI coding,
the relation between the SEW and the REW magnitudes was
approximated by computing the magnitude of one as the unity
complement of the other [14], [17]–[20]. Suppose denotes
the spectral magnitude vector of the last quantized REW in the
current frame. An “implied” SEW vector is calculated by

(42)

and from which the mean vector is to be removed. Vectors
whose means are removed are denoted with an apostrophe.
Then, we compute a (mean-removed) estimated “implied”
SEW magnitude vector, , using a diagonal estima-
tion matrix

(43)

Additionally, a “self-predicted” SEW vector is computed by
multiplying the delayed quantized SEW vector, , by a diag-
onal prediction matrix . The predicted (mean-removed)
SEW vector, , is given by

(44)

The quantized vector, , is determined by an AbS search ac-
cording to

(45)

where is the diagonal spectral weighting matrix. The
(mean-removed) quantized SEW magnitude, , is the sum
of the predicted SEW vector, , and the codevector

(46)

The EWI coder uses the optimized SEW, , and the opti-
mized weighting, , for the AbS SEW quantization.

In order to exploit the information about the pitch, and the
voicing level, we have partitioned the possible pitch range into
six subintervals, and the REW parameter range into three, and
generated 18 codebooks, one for each pair of pitch range and un-
voicing level. The pitch and the unvoicing level determine which
codebook is searched. Each codebook has associated with it two
mean vectors, and two diagonal prediction matrices. To improve
the coder robustness and the synthesis smoothness, the cluster
used for the training of each codebook overlaps with those of the
codebooks for neighboring ranges. Since each quantized target
vector may have a different value of the removed mean, the
quantized mean is added temporarily to the filter memory after
the state update, and the next quantized vector’s mean is sub-
tracted from it before filtering is performed.

Fig. 12. Block diagram of the dual predictive AbS SEW VQ.

Fig. 13. Weighted SNR for dual predictive AbS SEW VQ.

Fig. 14. Output weighted SNR for the 18 codebooks, nine-bit AbS SEW VQ.

Fig. 15. Mean-removed SEWs Weighted SNR for the 18 codebooks, nine-bit
AbS SEW VQ.

The output weighted SNR, and the mean-removed weighted
SNR, of the scheme, for M-IRS [35] filtered speech, are
illustrated in Fig. 13. Evidently, a very high SNR is achieved
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with a relatively small number of bits. The weighted SNR of
each codebook, for the nine-bit case, is illustrated in Fig. 14.
The differences in SNR between the three REW parameter
ranges is dominated by the different means. The respective
mean-removed weighted SNR of each codebook is illustrated
in Fig. 15. Within each voicing range, the differences in SNR
for different pitch ranges are mainly due to the prediction gain
and to the number of bits per vector sample, which decreases
as the number of harmonics increases.

Example for the two predictors for three REW parameter
ranges is illustrated in Fig. 16. For a voiced segment, the SEW
predictor is dominant and the REW predictor is less important
since its input variations in this range are very small. As the
voicing decreases, the contribution of the SEW predictor de-
creases, and the REW predictor becomes the dominant contrib-
utor at the lower part of the spectrum. Both predictors give de-
creasing contributions as the voicing decreases from the inter-
mediate range to the unvoiced range.

VII. PITCH SEARCH

The pitch search consists of a spectral domain search em-
ployed every 10 ms and a temporal domain search employed
every 2 ms, as illustrated in Fig. 17. The spectral domain pitch
search is based on harmonic matching [2], [3], [30]. The tem-
poral domain pitch search is based on varying segment bound-
aries. It allows for locking onto the most probable pitch period
even during transitions or other segments with rapidly varying
pitch. Initially, pitch periods, , are searched every 2 ms at
instances by maximizing the normalized correlation of the
weighted speech , that is (see (47) at the bottom of the
page) where is some incremental segment used in the sum-
mations for computational simplicity, and .
Then, every 10 ms a weighted-mean pitch value is calculated by

(48)

where is the normalized correlation for .

VIII. GAIN QUANTIZATION

The gain trajectory is commonly smeared during plosives
and onsets by downsampling and interpolation. We address
this problem and improve speech crispness with a novel
switched-predictive AbS gain VQ technique, shown in Fig. 18.
Switched-prediction is introduced to allow for different levels
of gain correlation, and to reduce the occurrence of gain
outliers. In order to improve speech crispness, especially for

Fig. 16. Predictors for three REW parameter ranges.

plosives and onsets, temporal weighting is incorporated in
the AbS gain VQ. The weighting is a monotonic nonlinear
function of the temporal gain, , which gives greater
emphasis to larger gain values. Two codebooks are used; each
codebook has an associated predictor coefficient, , and a DC
offset . The quantization target vector is the DC removed
log-gain vector denoted by . The search for the minimal
WMSE is performed over all the vectors, , of the
codebooks. The quantized target, , is obtained by passing
the quantized vector, , through the synthesis filter. Since
each quantized target vector may have a different value of the
removed DC, the quantized DC is added temporarily to the
filter memory after the state update, and the next quantized
vector’s DC is subtracted from it before filtering is performed.
Since the predictor coefficients are known, direct VQ can be
used to simplify the computations.

IX. BIT ALLOCATION

The bit allocation for the 2.8 kb/s EWI coder is given in
Table I. The frame length is 20 ms, and ten waveforms are
extracted per frame. The line spectral frequencies (LSFs) are
coded using predictive multi-stage VQ (MSVQ), having two
stages of ten bits each, a two-bit increase compared to the pre-
vious version of our coder [22], [23]. This bit increase improves
the resolution of the spectral envelope and therefore yields
whiter residual which improves the modeling, and therefore
improves speech quality, most notably in the transitions. The
10th dimensional log-gain vector is quantized using nine bit
AbS VQ [22], [23], including one bit for the switch prediction.

(47)



12 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 9, NO. 8, NOVEMBER 2001

Fig. 17. Pitch search of the EWI coder.

The pitch is coded twice per frame. A fixed SEW phase was
trained for each one of the eighteen pitch-voicing ranges [21],
as explained in Section IV.

X. SUBJECTIVE TEST RESULTS

We have conducted a subjective A/B test to compare our
2.8 kb/s EWI coder to the G.723.1. The test data included 24
M-IRS [35] filtered speech sentences, 12 of which are of fe-
male speakers, and 12 of male speakers. Twelve listeners par-
ticipated in the test. The test results, listed in Tables II and III,
indicate that the subjective quality of the 2.8 kb/s EWI exceeds
that of G.723.1 at 5.3 kb/s, and it is slightly better than that of
G.723.1 at 6.3 kb/s. The EWI preference is higher for male than
for female speakers. In addition, we have done extensive lis-
tening tests with noisy speech and found that the EWI coder is
robust to various noise conditions.

XI. SUMMARY AND CONCLUSIONS

We have found several new techniques that enhance the per-
formance of the WI coder, and allow for better coding efficiency.
The most significant of these, reported here, AbS optimization
of the SEW, AbS vector-quantization of the dispersion-phase,
dual-predictive AbS quantization of the SEW, efficient parame-
terization of the REW magnitude, AbS VQ of the REW param-
eter, a special pitch search for transitions, and switched-predic-
tive AbS gain VQ. These features improve the algorithm and its

Fig. 18. Switched-predictive analysis-by-synthesis gain VQ using temporal
weighting.

TABLE I
2.8 kb/s EWI BIT ALLOCATION

TABLE II
A/B TEST: EWI VERSUS 5.3 kb/s G.723.1

TABLE III
A/B TEST: EWI VERSUS 6.3 kb/s G.723.1

robustness. Subjective test results indicate that the performance
of the 2.8 kb/s EWI coder slightly exceeds that of G.723.1 at
6.3 kb/s and therefore EWI achieves very close to toll quality,
at least under clean speech conditions.
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