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Abstract—This paper considers the problem of selecting a set
of parameter values from a given parameter space, in order to
perform rate-distortion optimization in the context of audio com-
pression. Due to interdependencies between parameters, separate
optimization of parameter values is inherently suboptimal, yet
a straightforward brute-force joint search involves prohibitive
computational complexity. This work proposes a new method
for joint rate-distortion optimization, while accounting for in-
terparameter dependencies. The optimal solution is achieved, at
significantly reduced complexity as compared to a brute-force
search, by employing a Viterbi search over a trellis. Two objective
distortion metrics are specifically considered: the average, and
the maximum noise-to-mask ratio. Subjective (AB/MOS) and ob-
jective (average/maximum noise-to-mask ratio) tests demonstrate
considerable gains at low bit rates of 16 kbps per channel for a
44.1-kHz sampled audio signal using the proposed approach.

Index Terms—Advanced audio coder (AAC), audio coding,
bit allocation, dynamic programming, parameter selection, side-
information, trellis, Viterbi.

I. INTRODUCTION

AUDIO COMPRESSION is central to many multimedia
applications such as digital audio broadcasting and trans-

mission of music over the Internet. Such applications benefit
substantially from improved compression performance. Current
audio coders such as MPEG Advanced Audio Coder (AAC)
[1], [2], AC3 [3], PAC [4], ATRAC [5], and G.722.1 [6] rely
heavily on the removal of perceptually irrelevant information
[7]–[10] from the source signal. For a thorough description of
current audio coding techniques, see [11]. Perceptually irrel-
evant information is exploited via calculation of the masking
threshold—the threshold below which a signal (or noise) is
rendered inaudible—which, in turn, involves time-adaptive
spectral shaping of the quantization noise. Shaping of the
quantization noise is a rate-distortion optimization performed
at the encoder. Noise shaping is typically achieved by varying
the granularity of the quantizer employed in the different
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frequency bands (or critical bands [7] that emulate the human
auditory system’s grouping of adjacent frequency bands). The
choice of quantizer granularity is one of the many parameters
whose values are chosen dynamically by the encoder in order to
perform rate-distortion optimization. We refer to the complete
set of such parameters as the “encoding parameters.” Selection
of encoding parameter values is central to the rate-distortion
optimization performed by the encoder.

Consider AAC for example. It performs spectral decompo-
sition of a frame of the audio signal, groups the spectral coef-
ficients into bands, and quantizes the coefficients using scalar
quantizers. Adaptive noise shaping is achieved by allowing
per-band scaling of the generic scalar quantizer by an appro-
priate scale factor (SF). Since the SF is shared by the entire
band, each band is commonly referred to as a scale factor band
(SFB). The quantized coefficient indices are entropy coded
using a possibly different Huffman codebook (HCB) for each
SFB. The choice of the HCB is made from a set of predesigned
codebooks. The SF and HCB values chosen per SFB form the
set of parameters which, together with the quantized coeffi-
cient indices, convey to the decoder all the information needed
to reconstruct the coefficients for the frame. These parameters
constitute the encoding parameters, whose values are deter-
mined by the encoder for every frame of the audio signal.
It is conceivable to obtain the optimal parameter values in a
rate-distortion sense using a straightforward brute-force search.
However, such an optimal scheme involves prohibitive com-
putational complexity due to the large size of the parameter
space. AAC allows for as many as 60 distinct SF values and
12 predesigned HCBs. For a frame of 44.1-kHz sampled audio
consisting of 49 SFBs the cardinality of the parameter space
reaches —clearly putting brute-force search beyond
computational reach.

A suboptimal choice of parameter values can significantly
degrade the encoder’s compression performance. At rela-
tively high encoding rates, there exist multiple solutions
for which the quantization noise completely falls below the
masking threshold. In this case, a suboptimal choice in the rate-
distortion sense may not cause considerable subjective perfor-
mance degradation. However, when the signal is quantized at
low rates (for example, 16–48 kbps/channel for a 44.1-kHz
sampled signal) it is impossible to maintain all the quantization
noise below the masking threshold, and it is critical to care-
fully optimize the parameter values. Hence, computationally
efficient search for the optimal encoding parameter values
is an interesting and important problem in audio coding. It
is known to play a crucial role in other signal compression
applications as well [12]–[14]. In this paper we focus on the
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problem of optimally selecting encoding parameter values for
audio compression. The term “optimality” is employed in the
rate-distortion sense, i.e., the optimal selection is one which
minimizes the distortion measure for the prescribed total rate.
We outline the solution for two objective metrics: the average
and the maximum noise-to-mask ratios (NMR) [15]–[18]. Note
that this paper does not directly address the widely recognized
problem of finding an objective metric that adequately reflects
the subjective quality of reconstructed audio signals.

Selection of values for the encoding parameters is closely
related to the problem of bit allocation [14], [19] whose early
approaches employ high-resolution quantization theory to
arrive at a simple solution that is implementable by the popular
water-filling algorithm [20]–[22]. The algorithm attempts to
maintain a constant distortion (say, NMR) across the coeffi-
cients (or critical bands) and forms the basis for selection of
parameter values in various audio coding algorithms, such as
the so-called two-loop search (TLS) [23]. For a comprehensive
review of approaches to bit allocation and parameter value
selection, see [12], [13], [24]–[27]. Conventional water-filling
based approaches suffer from two major drawbacks. First,
the coefficients are not statistically independent, however,
conventional methods do not accurately account for these inter-
coefficient dependencies that exist in the spectral representation
[13]; and second, as we show later, their solution fails to distin-
guish between the objective measures considered in this paper.
Consequently, the choice of encoding parameter values may
be significantly suboptimal for either metric and the resulting
compression performance penalty may be considerable at low
bit rates. The importance of improved low bit rate performance
is further highlighted in the case of bit rate scalable (also,
embedded or layered) compression [28], [29] where multiple
low bit rate encoding modules are employed.

We propose a search algorithm which explicitly optimizes
for the interparameter dependencies that exist in the spectral
representation. To combat the prohibitive computational com-
plexity of the straightforward brute-force solution, we recast the
problem as a search through a trellis, and employ dynamic pro-
gramming [30] to obtain the optimal solution at a drastically
reduced search complexity. The search is outlined for the two
objective metrics, which are both based on the NMR, namely,
ANMR and MNMR. The proposed trellis-based search is com-
pared with the water-filling approach of TLS described in [23]
as competing search modules in AAC (see Section V for fur-
ther details). Note that TLS is the best publicly disclosed search
method for AAC. Simulation results demonstrate substantial
improvement in the encoder’s low bit rate performance. For ex-
ample, on a standard critical test database from EBU-SQAM
[31], [32] comprising of 44.1-kHz sampled (mono) audio signal,
the proposed search method operating at bit rates in the range
of 16–32 kbps, requires half the bit rate to achieve the same
objective (ANMR/MNMR) and subjective (AB/MOS) quality
as TLS. When implemented within a four-layer scalable coder
where each layer employs 16-kbps AAC encoding modules,
the proposed scheme achieved performance close to that of a
56 kbps nonscalable AAC coder. Furthermore, as the solution
achieves rate-distortion optimality, it promises a useful frame-
work for performance evaluation of other search schemes (e.g.,

see [33] and [34]). The performance benefit is achieved at the
expense of computational complexity as compared to the TLS
and it is incurred only at the encoder. It is important to empha-
size that the proposed scheme leaves the bit stream syntax intact
and the AAC decoder unaltered. The method is hence standard-
compatible. Preliminary results of this work have been reported
in [35] and [36].

The organization of the paper is as follows. Section II
provides a brief background to the problem. The proposed
trellis-based search method is derived in Section III. The im-
plementation of the proposed search within AAC is described
in Section IV, and results are summarized in Section V.

II. BACKGROUND

A. Objective Measures in Audio Coding

Most objective measures employed in rate-distortion opti-
mization of the encoder are designed to model subjective, per-
ceptual distortion. On the one hand, simple metrics such as the
mean-squared error (MSE) fail to model perceptual distortion
accurately. On the other, metrics with relatively good modeling
accuracy, such as PAQM [37] and PEAQ [38], [39], are too
complex to be used in run-time optimization of the encoder.
While a suitable objective metric that accurately models the
subjective quality remains an unsolved problem, most widely
used objective measures involve the NMR [15], [16], which
is the ratio of the quantization noise energy to the masking
threshold in the given critical band [7]–[10]. The NMR in the
critical band may equivalently be viewed as a weighted squared
error (WSE) whereby the weights are simply the inverse of the
masking threshold in the critical band. NMR below unity in
a critical band indicates that quantization noise in that band
is imperceptible. At low rates it is often impossible to main-
tain the NMR below unity in all the critical bands. Hence, the
NMR values obtained from the various critical bands are com-
bined into a scalar distortion metric. Two common metrics are:
ANMR, which is the NMR averaged over all the critical bands
in the frame, and MNMR, which is the maximum NMR of all
the critical bands in a frame [17], [18].

Let be the squared quantization error, be the weight of
critical band , and be the total number of bands. ANMR is
given by

(1)

and MNMR by

(2)

Subjective listening tests performed by us [36] and in [17]
and [18] indicate substantial differences in the quality of audio
signal resulting from optimization of the two metrics. At low
rates, optimization of MNMR metric resulted in fewer annoying
artifacts such as clicks, but the average quality was perceived to
be inferior to ANMR. However, there was no general consistent
preference for either.
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Fig. 1. Block diagram of the AAC encoder. Transform and preprocessing tools
are applied prior to quantization and coding (QC). The psychoacoustic model
outputs the masking threshold which is used for rate-distortion optimization.

B. MPEGs Advanced Audio Coding

This section focuses on the quantization module of AAC.
A simplified, high-level block diagram of the AAC encoder is
shown in Fig. 1. The quantization and coding (QC) module,
which is central to this work, is shown in greater detail. The
time domain signal is grouped into overlapping frames and
transformed into the spectral domain using the modified dis-
crete cosine transform (MDCT). The transform yields a set of
1024 coefficients that are then quantized using the QC module.
In the QC module, the transform coefficients are grouped into
nonuniform frequency bands, termed scale factor band (SFB),
and all coefficients within a given SFB are quantized using the
same nonuniform scalar quantizer which is characterized using
a compander (see [1] and [2], for further details). The quantizer
is a scaled version of the generic quantizer, and is determined
by the scale factor (SF) parameter, which is selected for each
SFB and controls the desired noise level in the band. The time
domain signal is also input to the psychoacoustic model, whose
output is the masking threshold for each SFB.

Statistical redundancy in the quantized coefficient indices
is exploited by the use of entropy and run-length coding tech-
niques. AAC offers a set of 12 predesigned Huffman codebooks
(HCB), from which one is selected for each SFB for encoding
the quantized coefficients indices. In addition to the quantized
coefficient indices, side information must be transmitted to
specify SF and HCB selections for each SFB. SF values are
differentially encoded using a variable length code, and HCB
selection is encoded using a run-length code. The rate-distor-
tion optimization at the encoder involves the choice of SF and
HCB values for each SFB.

C. Parameter Value Selection in Current Audio Encoders

Recall that removal of perceptually irrelevant information via
quantization noise shaping is implemented in audio coding by
appropriately selecting the values of the encoding parameters
for the various frequency bands. This problem is, in turn, closely
related to the problem of bit allocation, which has been exten-
sively covered in the signal compression literature. A compre-
hensive coverage of this topic is beyond the scope of this paper,
and can be found in [14] and [19]. We will only briefly outline
here the relevant portions of the classic problem of bit alloca-
tion and its known water-filling solution [20]–[22] which stems
from high-resolution quantization theory.

The bit allocation problem is one where a fixed bit budget
needs to be distributed among different coefficients in order

to minimize the distortion (e.g., NMR) at hand. Let be the
number of bits allocated to, and be the resulting distortion of,
coefficient . Let be the target rate and be the total number
of coefficients in the frame. The problem of bit allocation may
be stated as

(3)

where represents the bit allocation vector and
is the optimal allocation. Early solutions to the problem of

bit allocation use high-resolution (quantization) approximation
[20]–[22] to model the distortion as

(4)

where is the variance of coefficient , and is a constant that
depends on the slope of the probability density function of the
coefficients. All coefficients are typically assumed to have the
same . This model is the basis of the celebrated solution to the
problem of independent bit allocation

(5)

where (for proof see [14]). When the bit
allocation is optimal, it is easy to see that the resulting distortion
is the same for all coefficients, i.e.,

(6)

Hence, the optimal bit allocation can be implemented by a
simple water-filling algorithm, where the same level of distor-
tion is maintained at all coefficients, and this level is varied to
meet the target rate. Note that in the context of audio, (3) cor-
responds to the ANMR measure. An interesting (and perhaps
surprising) observation is made when one analyzes the bit allo-
cation problem for minimizing the MNMR distortion metric. It
turns out that the same water-filling solution optimizes MNMR
metric as well, at high resolution (see the Appendix for details).

Variants of the basic water-filling algorithm are typically
employed for selection of parameter values in audio coding.
Consider, for example, TLS [23], which consists of two nested
loops. The task of the inner iteration loop is to uniformly
change the SF values of all the SFBs by a constant amount,
and determine the HCB values so that the given spectral data
may be encoded while satisfying the rate constraint. The outer
loop changes the SF values of individual SFBs, and thus shapes
the quantization noise to best match the psychoacoustic model.
In a nutshell, TLS tries to maintain the NMR in each SFB
below a given level, and then adjusts this level to meet the rate
constraint.

One major drawback of the approach is the use of the dis-
tortion model given in (4). The model makes it difficult, and
often impossible, to account for the side-information rate when
performing dynamic bit allocation. Shoham and Gersho pro-
posed an alternative Lagrangian-based solution to account for
the side-information rate [13], [40], without recourse to high-
resolution approximation or other analytical models of the
distortion. However, they assumed coefficient independence in
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Fig. 2. Side-information employed by the TLS for a AAC implementation
using VM-TLS and TB-ANMR (proposed). The side-information rate is plotted
versus the total rate for a single channel 44.1-kHz sampled audio signal. Side-
information includes bits consumed to transmit SF and HCB values.

calculating the side-information rate. Similar results were also
reported in [24] and [25]. The more general case of dependent
bit allocation was addressed in [12].

D. Problem Motivation and Challenges

The encoder’s problem is to select the values of the encoding
parameters so as to minimize the distortion metric for the given
target rate. This problem is complicated by several factors. As the
statistical characteristics of the audio signal vary considerably
with time, parameter values must be chosen dynamically. A
trade-off emerges wherein dynamic selection helps reduce the
rate required to transmit the quantized coefficients but must be
transmitted as side-information and hence increases the rate. Fur-
ther, there exist dependencies across the spectral coefficients (or
critical bands) which affect the total bit rate. These dependencies
are, in fact, the motivation behind AACs use of run-length and
differential coding of HCB and SF values, respectively. Thus,
the side-information rate (and hence the total rate) is a joint
function of all parameter values used to encode the coefficients
in the frame. It cannot be expressed as a simple sum of the bits
independently optimized for encoding individual parameter
values. This observation points to a major shortcoming of the
conventional water-filling approach, which relies critically on
the invalid assumption of parameter independence. Yet another
drawback of the conventional approach is due to the underlying
rate-distortion model, which is derived from high-resolution
quantization theory. The model not only breaks down when
encoding rates are low, but also fails to accurately account for
the (time varying) rate required to transmit the side-information.
Conventional schemes do not take parameter dependencies into
account and fail to explicitly optimize the side-information rate.
TLS, in particular, accounts for the side-information rate only
by counting the side-information bits in the inner (rate) loop.
However, it does not explicitly optimize the encoding parameter
values while accounting for their contribution to the side-infor-
mation rate. At high rates, the price of ignoring explicit optimiza-
tion of the side-information rate may be tolerable because the

side-information rate forms a relatively small percentage of the
total rate. Fig. 2 shows the rate consumed in transmission of SF
and HCB values versus the total rate. It is evident that, at low bit
rates, side-informationmayconsumeasmuchas30%–40%of the
total rate.At these rates, ignoringside-informationandparameter
dependencies often results in a severe performance penalty.

The problem is further complicated in the case of audio by the
fact that different objective criteria, such as ANMR and MNMR,
may be used for encoder optimization. Note that this compli-
cation disappears whenever the assumptions of high-resolution
and parameter independence are valid. Recall further that in this
case the same water-filling algorithm optimizes both criteria.
Thus, the TLS-based search method can afford to be agnostic of
the distortion metric. However, these assumptions fail to hold in
practical audio coding. In fact, subjective tests [17], [18], [36]
indicate that in practice (when the above assumptions do not
hold) the perceived output quality of the optimum solution for
the two measures differ significantly, especially at low rates. The
goal of efficient audio compression makes it imperative to opti-
mize a correctly chosen distortion metric.

III. JOINT SELECTION OF PARAMETER VALUES:
PROBLEM FORMULATION

In this section, we tackle the problem in the context of gen-
eral audio coding. To concretize the presentation, we employ
the AAC framework for illustrating the relevant concepts. For
the general formulation, we continue to use terminology consis-
tent with the one commonly employed in classical bit allocation,
wherein the parameter values are selected for each coefficient.
The formulation is specialized in a straightforward manner to
the case of AAC, where parameter values are selected per SFB.
It should perhaps be reemphasized that this approach is not re-
stricted to AAC but is, in fact, applicable to a wide variety of
audio coding standards including AC-3 [41] and G.722.1 [6].

A. Parameter Space

The quantization and encoding of each spectral coefficient is
determined by a limited set of encoding parameters. In the spe-
cific case of AAC, the encoder selects values for two parameters,
SF and HCB, for each SFB in the frame. Once this choice is made,
the quantization and coding operations may be performed for all
the coefficients in that SFB. Hence, SF and HCB, whose values
are chosen per SFB, constitute the encoding parameters for AAC.
The parameter space of a coefficient (or a band) is the set of all
permissible values of all the parameters for the coefficient (or
band). A point in the parameter space is given by the combination
of values for the (typically multiple) encoding parameters in use
by the specific compression algorithm. Note that AAC sets re-
strictive boundson the quantization index valuesand the dynamic
range of the quantized coefficients that may employ a given
HCB. These restrictions effectively reduce the parameter space.

B. Cost Function Formulation

Let represent the parameter for the th coefficient,
where is the parameter space with

possible parameters. Without loss of generality, we assume
for simplicity the same parameter space for each coefficient.
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Let the number of coefficients in the frame be . We denote
the set of parameters for the coefficients by the vector

. For the case of AAC, let us denote the set
of all possible SF values by and HCB
values by . Note that we allow for
distinct SF values and distinct HCB values. Further, let
be the SF value and be the HCB value for the th SFB in the
frame. Vectors and are used to denote the selected SF and
HCB values for all the SFBs in the frame, i.e.,
and . The combined parameter space for each
SFB in AAC is the product space and has
elements: , .

C. Total Rate and Distortion

The total rate, , and distortion, , are functions of the pa-
rameter vector

(7)

In order to make the formulation applicable to all scenarios of
potential interest, neither the distortion nor the rate is assumed
additive over individual coefficients.

To illustrate this rate and distortion calculation we return to
the example of AAC. The total rate required for quantization in
AAC can be divided into three parts: bits required to transmit
the quantized coefficient indices; bits required to transmit the
SF values; and bits required to transmit the HCB values.

• Let be the number of bits required to encode
the quantized coefficient indices of the th SFB using the
SF value of and HCB value of . (Note that given the
spectral coefficients, is completely determined by the
two parameters).

• Let denote the number of bits specifying SF for a SFB.
Since AAC employs differential coding of the SFs, is a
function of two parameters, and , for the th SFB,
and we write explicitly .

• Similarly, let represent the number of bits needed to en-
code the HCB value of the SFB. The run-length coding of
HCB produces 9 bits whenever and no bits oth-
erwise. Hence, is a function of and and we write
explicitly .

Combining the three functions, the number of bits, , for
transmitting the th SFB is given by

(8)
The total number of bits produced for the entire frame is then

(9)

where and are initialized to zero.
Given the spectral coefficients, to calculate the distortion in

SFB we need only the band’s SF value , which determines
the quantized coefficients, and the corresponding quantization

noise. Let represent the quantization noise. If is the
weight (inverse of the masked threshold) of the th SFB, the
NMR of the SFB equals . Either ANMR or MNMR can
be used as the metric to combine the NMRs from the different
SFBs. ANMR and MNMR for AAC can be calculated by sub-
stituting for in (1) and (2), respectively.

The problem of parameter values selection may now be stated
mathematically as

(10)

where is the target bit rate for the frame. Note that, in the
case of AAC, is given by (9), and by (1) or (2),
depending on the criterion in use.

IV. TRELLIS-BASED OPTIMIZATION

Let us now consider the solution of the optimization problem
of (10). There are possible choices at each stage and there are

such stages. A straightforward brute-force solution to (10)
has complexity in the order of . In the case of AAC,
there may be as many as 49 SFBs, 60 SFs, and 12 HCBs, and the
complexity of the brute-force search is , which is
clearly impractical. We outline next an alternative approach to
this optimization problem, which is based on dynamic program-
ming [30]. First, standard Lagrangian formulation is employed
to convert (10) into an unconstrained optimization problem. The
Lagrangian cost function so obtained, is then demonstrated to
exhibit the property of dynamic programming optimality [30].
The well-known Viterbi search [42], [43] through a trellis is ap-
plied to achieve the optimal solution at highly reduced com-
plexity. Detailed algorithmic description of the proposed so-
lution’s application to AAC is presented for the two objective
measures. (A general description of the Viterbi algorithm is
available at the above references).

The standard Lagrangian procedure to reformulate the con-
strained optimization problem of (10) yields the Lagrangian cost

(11)

where is the Lagrange multiplier. Clearly

(12)

is the unconstrained minimization problem whose solution
is also the solution of (10), once is adjusted to satisfy the
constraint . The original constrained minimization
problem is hence solved by iterating over the different values
of so as to achieve the target rate.

A. Dynamic Programming Solution

We construct a trellis with stages and states and pop-
ulate the states with the parameter values , . A
simple three-stage trellis is shown in Fig. 3. With every branch
in this trellis we associate a cost corresponding to its contribu-
tion to the overall Lagrangian cost. The cost associated with
the branch connecting and is denoted by .
Clearly, every path through the trellis gives a particular choice of
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Fig. 3. Shown is a three stage, three state trellis structure in which the
states represent the parameter values and the stages represent the coefficient
indices. Suboptimal paths are identified and pruned employing the dynamic
programming property of cost function.

encoding parameter values. We now make the standard observa-
tion: if the optimal path from to passes through , then it
contains the optimal path from to . This observation forms
the basis of the Viterbi search [42], [43] and allows for an effi-
cient search procedure where many partial paths can be pruned
out without loss of optimality. The observation is shown graph-
ically in the three-stage trellis of Fig. 3. At the second stage,

and
hence, can be pruned out. Effectively, only paths
survive at the end of each stage (one ending at each state). The
search then proceeds from one stage to the next and terminates
at the last stage, where the entire optimal path is determined.

The use of dynamic programming leads to a dramatic re-
duction in complexity. Recall that the brute-force search has
computational complexity of . In the dynamic program-
ming approach, only “best” paths are retained at any stage
and comparison is carried out for stages sequentially. For
each state comparison is made from all edges branching into
it (bounded by M) making the total computation complexity
of the Viterbi search , which is linear in the number
of stages. Application of dynamic programming to ANMR and
MNMR optimization in AAC is outlined next.

B. ANMR

The ANMR measure was discussed in Section II-A and is
given by (1). The search of encoding parameter values in AAC
to minimize the ANMR can be stated as

(13)

where is given by (9). The corresponding Lagrangian
function is

(14)

where the superscript indicates the ANMR measure. To
summarize, the resulting optimization problem is to find the
minimizer

(15)

We reemphasize that our problem formulation accounts for
the total number of bits used to represent the frame, including
interparameter dependencies and encoding of the side-informa-
tion. Since is the sum of nonnegative terms and, the contri-
bution of and to only depends on previous decisions

and , a dynamic programming procedure can be ap-
plied to find the optimal parameter values.

The search algorithm is outlined next. A trellis is constructed
where each stage corresponds to a SFB (total of 49 stages). The
state at stage is denoted by . The states at a stage repre-
sent all combinations of possible choices of SF and HCB for this
SFB, i.e., if the system passes through then it employs the
th pair of parameter values for the th SFB: .

Further, we define the state-transition cost as the cost
in side-information rate for a transition from to .
This cost is: . The minimum
cost (partial) path to is denoted by the vector . Finally,
we denote by the cost of the minimum cost path .
This is also commonly referred to as the metric of . The
Viterbi search is then used to find the path through this trellis
that achieves the global minimum of for a given . The
value of that achieves the target bit rate constraint is searched
using an iterative search. The search procedure is enumerated
as follows.

Step 1) Initialize. Set .
Step 2) Initialize. Set metric , , ,

and .
Step 3) Search. find the best path leading to by com-

puting the metric

and let be the argument that achieves this min-
imum. The partial path leading to is given by

Step 4) Next Stage. If , go to Step 3).
Step 5) Backtrack. The best set of parameter values

(overall) is given by, ,
where .

Step 6) Adjust rate. For the optimal and , com-
pare total bit rate to the prescribed rate. If the con-
straint is not met adjust and go to Step 2).

C. MNMR

The MNMR measure was explained in Section II-A and is
given by (2). The search of encoding parameter values in AAC
to minimize the MNMR can be stated as

(16)
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where is given by (9). The solution methodology in
the MNMR case bears some similarity to that of ANMR ex-
cept that, due to the min-max nature of MNMR, we do not use
a classic Lagrangian approach. Instead, we define the optimal
path through a trellis as the one that minimizes the rate (and
purposely ignore the distortion for the moment). We hence re-
define the cost function as the total rate function

(17)

Since the usual observations about additivity hold for the total
rate, a dynamic programming procedure can be applied to find
the optimal path for the given trellis. The optimal path gives the
best rate possible while ignoring the distortion incurred. The key
to the solution for the MNMR case is in the construction of the
trellis. Only those states are allowed (or are valid) for which
the distortion is less than a certain constant value (say ), i.e.,
state in stage is a valid state if . Let ,

be the set of parameter values that minimize when
,

(18)

For such a trellis then, . Rate con-
straint is met by adjusting the parameter (not to be confused
with the Lagrange multiplier of the ANMR case).

The search algorithm for the MNMR case is outlined next. A
trellis is constructed in a fashion similar to the ANMR case, al-
beit with the distinction that the valid states at stage represent
all combinations of possible choices of SF and HCB values for
which the NMR in the SFB is less than or equal to some constant
(say ), i.e., is a valid state if . Again, similar to
the ANMR case, we define state-transition cost as the cost
in side-information rate for a transition from to . This
cost is: . Note the lack of the La-
grange multiplier in defining the state-transition cost. We also
denote the minimum cost path to state by the vector and
the cost of the minimum cost path by . The Viterbi search is
used to find the path through this trellis that achieves the global
minimum of for a given . The value of that achieves the
target bit rate constraint is searched using an iterative procedure.

Step 1) Initialize. Set .
Step 2) Find Valid States. A state , , is a valid state

and retained in the trellis if
Step 3) Initialize. Set metric , , ,

and .
Step 4) Search. find the best path leading to by com-

puting the metric

and let be the argument that achieves this min-
imum. The partial path leading to is given by

Step 5) Next Stage. If , go to Step 4).

Step 6) Backtrack. The best set of parameter values
(overall) is given by, ,
where .

Step 7) Adjust rate. For the optimal and , com-
pare total bit rate to prescribed rate. If the constraint
is not met adjust and go to Step 2).

For rate savings, AAC allows any set of SF and HCB values to
be assigned to a SFB that is below the masking threshold. This is
incorporated in our trellis by splitting every state into two—one
where quantization is performed using the assigned SF and HCB
values, and the other where all quantized coefficients are set
to zero. The splitting of the states is similarly applied in either
case of ANMR or MNMR, and results in a twofold increase in
computational complexity.

V. SIMULATION RESULTS

In this section, we summarize the experimental setup in-
cluding implementation details, and present the simulation
results. A simplified AAC coding module derived from the
publicly available MPEG AAC Verification Model (VM) [32]
was employed for objective and subjective evaluation of the
proposed schemes. Bit reservoir, bandwidth control and window
switching modules were not employed and AAC was made to
operate at a nearly constant bit rate. The implemented modules
of AAC adequately serve their purpose of providing a framework
for comparison of the competing search methods, albeit without
attempting to achieve the performance of quality-optimized
proprietary AAC encoders. For clearer comparison TLS [23]
of the VM (VM-TLS) is used with some minor modification.
The purpose of the modification is to emulate traditional bit
allocation using the water-filling approach. VM-TLS has two
nested loops. In the inner (distortion) loop, the SF values are
chosen such that the NMR in each SFB is constant (say ). The
total bit rate required for encoding the frame given these SFs is
computed, and the value of constant is adjusted so as to meet
the constant target rate constraint in the outer (rate) loop. This
modification makes no noticeable change in quality of the coded
audio and no consequential difference in the rate-distortion
curves of the VM-TLS presented below. The psychoacoustic
model is taken from [2] and [9] with minor modifications and
simplifications. The spreading function and the prediction to
find the tonality factor were derived from [17] and applied to
the MDCT coefficients as described in the cited reference. For
the test set, eight audio files of sampling rate 44.1 kHz were
taken from the EBU SQAM [32] database, which included
tonal signals, castanets, two singing files and two speech files.

The trellis-based minimization of ANMR (TB-ANMR) and
MNMR (TB-MNMR) are implemented as explained in Sec-
tions IV-B and C, respectively. The trellis states were popu-
lated with all combinations of 60 SF and 12 HCB values. Since
each state was split into two, the total number of states equals

. To reduce complexity, the transition at each
state was restricted to the four nearest HCB values, i.e., the tran-
sition to the current state with a particular HCB value (say )
can only occur from states which have HCB values in the range

. No significant performance degradation was
observed due to this restriction.
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Fig. 4. Distortion-rate performance of the competing schemes. Shown is
the ANMR versus bit rate for VM-TLS (dot-dashed), TB-ANMR (solid) and
TB-MNMR (dashed). Note that TB-MNMR is optimized for MNMR metric
but evaluated using ANMR.

A. Objective Results for a Single-Layer Coder

We compared the performance of TB-MNMR, TB-ANMR
and VM-TLS on the test set. Figs. 4 and 5 depict the distortion-
rate performance curves of single-layer coder over the test set.
Fig. 4 shows the performance of the three schemes evaluated
using the ANMR measure. Note specifically that TB-MNMR
is optimized for the MNMR measure but evaluated here using
ANMR. TB-ANMR outperforms the standard VM-TLS tech-
nique. Also of interest is the fact that the TB-MNMR scheme
outperforms VM-TLS although it is evaluated using ANMR as
a distortion criterion.

Fig. 5 shows the performance of three schemes evaluated
using the MNMR measure. Note that, in this case, TB-ANMR
is optimized for ANMR but is evaluated using MNMR. The
poor performance of TB-ANMR when evaluated by the mis-
matched cost MNMR is explained by realizing that TB-ANMR
can achieve bit rate savings by allowing high NMR in a few crit-
ical bands (and hence increase the MNMR distortion).

For both ANMR and MNMR trellis-based search outper-
forms the VM-TLS by a substantial margin. In particular, the
performance of proposed approach yields considerable gains at
coding rates of 16–48 kbps. For example, as seen from Fig. 4,
TB-ANMR operating at 16 kbps achieves the same ANMR as
VM-TLS at 40 kbps, while from Fig. 5, we see that TB-MNMR
operating at 16 kbps achieves same MNMR as VM-TLS at
25 kbps. VM-TLS incurs a larger performance penalty when
evaluated using the ANMR metric. Although VM-TLS cannot
differentiate between ANMR and MNMR, simply trying to
keep a constant NMR across the frequency bands results in a
more severe penalty in terms of the ANMR metric than the
MNMR metric, at low bit rates.

B. Subjective Results for a Single-Layer Coder

The three competing techniques were evaluated at 16 kbps
using the ITU-5-grade ACR scheme [44] to produce the MOS

Fig. 5. Distortion-rate performance of the competing schemes. Shown is
the MNMR versus bit rate for VM-TLS (dot-dashed), TB-ANMR (solid)
and TB-MNMR (dashed). Note that TB-ANMR is optimized for ANMR but
evaluated using MNMR.

Fig. 6. Subjective five-point Mean-Opinion Score (MOS) test results for
VM-TLS, TB-ANMR and TB-MNMR for a test set of eight files quantized at
16 kbps. 5 = Excellent, 4 = Good, 3 = Fair, 2 = Poor, and 1 = Bad. The vertical
bars indicate 95% confidence interval. The test employed 20 listeners.

scores. The listening test was performed with 20 listeners (in-
cluding several trained listeners). The test database consisted of
eight files, each of about 4–8 s long. The critical test material is
taken from the EBU SQAM database [31], [32] and consists of
a variety of signals including German male speech, castanets,
vocal singing, and harpsichord. The files were encoded using
the three schemes and played twice resulting in a set of 48 oc-
currences files schemes times . These 48 occurrences
were played in a random order. The subjects were asked to rate
each file on a 1 to 5 scale as follows: 5 = Excellent, 4 = Good, 3 =
Fair, 2 = Poor, and 1 = Bad. They were also allowed to repeat the
file as many times as they desired until they made their final de-
cision. The files were played on a conventional computer with a
high-end audio card using headphones. The subjective test was
performed in a quiet room that was designed for audio tests.
Fig. 6 shows the overall performance of the three schemes.
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Fig. 7. Detailed break-up of subjective five-point Mean-Opinion Score (MOS)
test results for VM-TLS, TB-ANMR and TB-MNMR for a test set of eight files
quantized at 16 kbps. 5 = Excellent, 4 = Good, 3 = Fair, 2 = Poor, and 1 = Bad.
Files M1 to M4 represent instrumental music while S1 to S4 contained vocals.

A detailed break-up of performance for each test file is given
in Fig. 7. The first four files, labeled M1 to M4 are, instrumental
music files and the last four, denoted by S1 to S4, are vocal
singing and speech. It is clear that for vocal signals TB-ANMR
performs better than TB-MNMR in all cases. For instrumental
music signals, TB-MNMR performed marginally better than
TB-ANMR in all cases but M3. It is interesting to note that M3 is
a castanet signal containing sharp attacks. Both TB-ANMR and
TB-MNMR offer substantially better quality than VM-TLS.

Furthermore, we performed an informal subjective “AB”
comparison test for the TB-ANMR approach operating at
16 kpbs and the VM-TLS operating at 32 kbps. The test set
contained eight music and speech files. Eight listeners, some
with trained ears, performed the evaluation. Each file was com-
pressed by both competing schemes and the two compressed
files were presented in random order to the listener. The lis-
teners were asked to indicate their preference between the two
samples and were also provided with the option of choosing “no
preference” if no discernible difference was perceived. Within
the margin of error (95% confidence interval) listeners on the
average rated the overall quality of the TB-ANMR operating at
16 kbps as equivalent to that of VM-TLS operating at 32 kbps.

The nature of distortion also lends an interesting observation
into the distortion metrics. As opposed to TB-ANMR, the output
of TB-MNMR was mostly free of annoying artifacts such as
pops and clicks. However, the output of TB-MNMR was some-
what inferior to that of TN-ANMR on the average. Most of
the signals optimized using the TB-ANMR measure performed
slightly better, but for a few test cases the TB-MNMR output
was preferred. The resulting audio bandwidth was not substan-
tially different in the three schemes.

C. Objective Results for a Four-Layer Scalable Coder

Fig. 8 shows the ANMR versus rate performance curves for a
four-layer scalable coder where each layer operates at 16 kbps.
Each layer quantizes the reconstruction error of the previous

Fig. 8. Four-layer scalable coder (16/32/48/64 kbps): ANMR versus bit rate
for VM-TLS and TB-ANMR and TB-MNMR. Nonscalable TB-ANMR is
shown for reference.

layer. Clearly, the trellis-based approach provides major sav-
ings in bit rate over VM-TLS and these savings increase at the
enhancement-layers. Also shown for reference is the nonscal-
able curve of TB-ANMR. This curve represents a theoretical
bound on the distortion-rate performance of a scalable system.
Note that the distortion-rate curve for scalable TB-ANMR ap-
proaches that of the nonscalable coder.

D. Note on Computational Complexity

The trellis-based minimization of ANMR (TB-ANMR) and
MNMR (TB-MNMR) is implemented as explained in Sec-
tions IV-B and C, respectively. If the trellis states were populated
with all combinations of SF and HCB values the total number of
states equals 1440 and the complexity of the full trellis search
is in the order of two million operations per SFB. (The trellis
complexity is linear rather than exponential in the number of
stages or SFBs, but quadratic in the number of states.) Recall that
to reduce the complexity further in our simulations, the transition
at each state was restricted to the fournearestHCBvalues.Hence,
the search complexity for the trellis-based scheme is reduced
by another factor of three. In two recent papers [33], [34], the
authors propose and discuss approaches for further reduction of
the search complexity. A nonoptimized implementation of the
proposed trellis-based scheme on a Pentium 1.6-GHz machine
was 25 times more complex as compared to VM-TLS approach.

VI. CONCLUSION

In this paper, we derived a trellis-based optimization scheme
for AAC for minimizing two different objective measures;
average NMR and maximum NMR. The scheme substan-
tially enhances performance at low bit rates. Under parameter
independence and high-resolution assumptions, the two objec-
tive measures yield an identical solution. However, ignoring
parameter dependencies leads to poor performance at low
rates. The main contributions were the reformulation of the
parameter optimization problem at the encoder to account for
interparameter dependencies in encoding side-information,
and the development of a dynamic programming technique to
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obtain the solution at manageable complexity. The resulting
bit stream is standard-compatible, and the additional computa-
tional complexity is incurred only at the encoder. Simulation
results employing AAC on the SQAM database demonstrate
considerable gains at low bit rates.

APPENDIX

This Appendix sketches briefly a demonstration that, under
the assumptions of high-resolution and interband parameter in-
dependence, ANMR and MNMR lead to the same solution. The
bit allocation problem for minimizing ANMR is defined as

such that (19)

The bit allocation problem for minimizing MNMR is defined as

such that (20)

The high-resolution model-based solution for the ANMR mea-
sure is obtained by the minimizer given in (5). We claim that
using the high-resolution distortion model of (4), the solution
to the MNMR problem of (20) results in the same minimizer of
(5), which we repeat here

The claim is proven based on a simple argument: Let be the
ANMR minimizer. By the water filling principle, or equal dis-
tortion in all bands as given in (6), we may write explicitly that

, a constant for all . Next, let be any other assign-
ment such that (a tentative MNMR solution). By
(19), we know that

This implies immediately that

(21)

i.e., is also the MNMR solution.
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