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Given a pair of random vectors X, Y, we study the prob-
lem of finding an efficient or optimal estimator of Y given
X when the range of the estimator is constrained to be a fi-
nite set of values. A generalized vector quantizer (GVQ). with
input dimension k, output dimension m, and size N maps in-
put X € R*, to output V(X) € R™. The output V(X) is
constrained to be one of the estimation codevectors in the
codebook, {y1,y2,-+,¥y~n}. The performance of the GVQ is
measured by the average distortion, D = E[d(Y,V(X))] for
a suitable output-space distortion measure d(-,-). A GVQ re-
duces to a conventional vector quantizer in the special case
where X =Y. The GVQ problem has been approached in
the information theory literature from many different stand-
points. In particular, it appears in the context of noisy source
coding, which is the special case where we quantize X, the
observable, noisy version of a source, Y.

A GVQ partitions the input space R* into N decision re-
gions or cells. Each cell is mapped by the GVQ to a partic-
ular codevector. In principle, a GVQ is fully characterized
by specifying (a) the input space partition and (b) the code-
book. Correspondingly, one can view the GVQ operation as
the composition of two operations, an encoder, £, which as-
signs an index ¢ to each input vector X, and a decoder, D.
which is a table-lookup operation that generates y;, given i.
Thus, £ is a classifier whose performance measure is the dis-
tortion in Y induced by the classification, and D is the condi-
tional estimator of Y, given the classification index assigned
by £. We summarize the necessary conditions and properties
of the optimal GVQ. However, the optimal encoder has. in
general, unmanageable complexity since its partition regions
may be neither convex nor connected. We propose therefore,
to constrain the complexity of the encoder, £ by restricting
its structure. Finding the optimal GVQ subject to the struc-
tural constraint is a hard optimization problem and to address
it, we apply ideas from statistical physics. Although the ap-
proach we propose is extendible to a variety of structures, we
restrict our derivation to the specific structure of the multi-
ple prototype classifier and we refer to such a GVQ system
as the multiple-prototype generalized vector quantizer (MP-
GVQ). In MP-GVQ, a codevector, y; owns M; prototypes,
{xj1,%;2..x;m;}. The encoding rule finds the nearest pro-
totype to the input X and maps it to the estimation vector
associated with that prototype. Thus, the encoder partition
region R; is the union of M; nearest neighbor Voronoi cells.

The MP-GVQ design problem is to jointly optimize the
prototypes {X;x} and codevectors {y,} to minimize the dis-
tortion, D. The problem cannot be directly solved with a vari-
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ant of Lloyd’s algorithm nor by a gradient descent approach,
due to the discrete nature of the classifier partition. We tackle
the problem by introducing a probabilistic framework for the
encoding rule where, for a given input, a probability distribu-
tion is assigned to the set of prototypes and the estimation
vector assigned to the input is determined by the class index
of the randomly chosen prototype. The degree of random-
ness is measured by the Shannon entropy. Randomization of
the nearest-neighbor partition subject to a constraint on the
encoder entropy results in the Gibbs distribution for the en-
coding rule. The Lagrange parameter, v controls the degree
of randomness , and as ¥ — oo , the encoding rule approaches
the (non-random) nearest-neighbor rule and the entropy goes
to zero. Furthermore, this Lagrangian framework is extended
to re-formulate the entire MP-GVQ problem as a minimization
of the expected distortion, D subject to an entropy constraint.
The corresponding Lagrange multiplier, § is inversely related
to the temperature in the physical analogy, as explained be-
low.

The method consists of starting with a highly random en-
coder (large value of the entropy conmstraint) and gradually
reducing the entropy while solving the optimization at each
level. At the limit of zero entropy, we obtain a deterministic
solution satisfying the structural constraint and minimizing
the output distortion.

This is an annealing process corresponding to the physical
analogy where a system whose energy is the output distortion
and whose temperature is inversely related to the Lagrange
multiplier , 3, is gradually cooled down to zero temperature.
This analogy also explains the ability of the method to avoid
many local minima that riddle the distortion surface. The
physical analogy is taken a step further by observing that the
system undergoes phase transitions in the sequence of solu-
tions obtained for decreasing values of entropy. These tran-
sitions correspond to an increase in the effective size of the
model (the number of distinct codevectors found in the so-
lution for each entropy value). We provide a result yielding
the critical temperature (at which a set of codevectors “split”
into a larger set) as a function of the covariances and cross-
covariances of X and Y in the respective clusters. The result
extends the original results for phase transitions of determinis-
tic annealing process previously studied for conventional vec-
tor quantizer design.

We demonstrate the usefulness of our MP-GV(Q design pro-
cedure for a variety of examples from the source coding liter-
ature.

432



