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ABSTRACT estimated probability density function (pdf) of the time

In low-complexity speaker-independent isolated of occurrence on a norrnalized time scale was intro-
word recognition systems based on Vector Quantiza- duced in [4]. In this latter approach each codevector
tion (VQ) with multiple codebooks, the performance has an associated probability table which gives the es-
of the VQ has a big impact on the overall performance timated probability of occurrence of the codevector at
of the systern. This paper introduces two techniques a given normalized time.
for combining spectral and temporal information in In this paper we propose two alternative ways of
the VQ process, with the objective of improving the incorporating the time information in the VQ code-
recognition performance, while maintaining or decreas- book. In both cases the time information is incor-
ing the storage requirement. The proposed techniques porated directly into the codebook with the objective
are compared to an existent method based on the prob- of generating a time-frequency characterization of the
ability distribution of the time of occurrence of spectral word. The proposed approaches are compared to the
vectors in the quantization process. approach based on probability tables.

The experimental results show that the proposed In the first approach, each word is represented by
methods improve significantly the recognition perfor- a codebook having codevectors which include spectral
mance and have similar or lower memory requirements components and time components. The codebook is
to the reference method. searched using a weighted Euclidean distance applied

to the log-spectral components and to the time com-

1. INTRODUCTION ponents. Both the spectral and the time components

are obtained through a joint training process. In our

Vector Quantization (VQ) has been previously used experiments, the approach based on time components

in low complexity speaker-independent isolated-word obtained better recognition results and lower memory
recognition for representing the spectral content of each complexity than the probability tables approach.

dictionary word in a small size V@ codebook. In such a In the second approach, the time information is

system, the recognizer has a number of VQ codebooks built implicitly into the codebook by training each code-

equal to the number of dictionary utterances. vector with input vectors corresponding to a given nor-

Initially, the recognition was based on selecting the malized time range. Each time-normalized section of
word corresponding to the codebook whose average spec- the input is represented by a set of neighboring code-
tral distortion with respect to the input token was min- vectors called sub-codebook and sub-codebooks are over-
imum [1, 2]. Such an approach does not use any tem- lapped to a variable degree. This technique is a gen-
poral information, i.e., is based on the occurrence of eralization of the segmented-codebook approach and
given spectral shapes in the input without using the achieves better time resolution without increasing sig-
information regarding the time of occurrence. nificantly the required memory.

A procedure for incorporating the temporal infor-
mation by subdividing each input word into a small 2. TIME-FREQUENCY VECTOR
number of non-overlapping regions and using a sepa- QUANTIZATION
rate codebook for each region was proposed in [3]. This
approach will be called below the segmented-codebook Assume the input utterance is linearly time normalized
approach. Finally, a technique based on combining the to a fixed length L. The time-normalized utterance

spectral distortion with a temporal distortion using an can be represented as a sequence of vectors z; = (&,1)
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where z is a spectral vector with components at log
scale and ¢ is the normalized time index (time of oc-
currence), ¢ = 1,2, ..., L. Assuming for the beginning
only one time component per spectral codevector, the
codevectors are of the form (y, , £ ) where ¢} is the time
component (real number in the range 1 to L). The time
component ¢ represents the expected time of occur-
rence of the spectral vector y, in the particular word
for which the codebook is trained.

The distortion measure used in searching the code-
book is given by

2
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where o5 and oy are the spectral and temporal vari-
ances estimated in the training process for cluster k.
A block diagram of the codebook training procedure
is shown in Figure 1. The codebook training is done
in two steps: first the spectral components are trained
independently of the time components, then the time
components are trained with the clustering based on
the spectral components only. The spectral and tem-
poral variances are computed for each spectral cluster
during the training process.
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Figure 1: Training Procedure for a Codebook with
Time Components

In a straightforward generalization of the above pro-
cedure, we considered the case where each spectral code-
vector has assigned a number My of time components
representing different expected occurrence times. The
index k indicates that the number of time components
may be different for each spectral codevector. Intu-
itively, this corresponds to the case when a given spec-
tral shape appears at different normalized times in a
given utterance. For the case of multiple time compo-
nents, the distortion measure used in search is based
on the time component which is “closest” to the nor-
malized time of occurrence of the input vector. Each
time component has an associated variance estimated
during the training process.

A block diagram of an isolated-word speaker-inde-
pendent recognizer using spectral-temporal codebooks
18 shown in Figure 2. Each dictionary utterance is rep-
resented by a spectral-temporal codebook and the -
put utterance is recognized by selecting the minimum
spectral-temporal distortion D, j = 1,2,...,V, where

L

D; = Z min d(gi,gk) (2)
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The previous equation shows that IJ; is a distortion
computed between the input utterance and the code-
book with index j. The distortion with respect to the
codebook (7 is obtained here by accumulating (over
the entire duration of the utterance) the distortions
(1) computed between each spectral-temporal vector
in the input utterance and the “closest” codevector in

the codebook CY.
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Figure 2: Recognition System with Time Components

The time component approach presented above is
equivalent to a compact representation of (partial) tem-
poral pdf information integrated within the codebook.
A time component requires at most 3 parameters (com-
ponent value and two variance values) and in our exper-
imental system even in the multiple time-component
system the average number of time parameters per spec-
tral vector is only about 4. On the other hand, the
probability table representation requires L parameters
per codevector, where typically I = 40. Despite the
significant reduction in the memory requirements pro-
vided by the compact time-component approach, as it



will be seen In the last section, the performance -
proves with respect to the probability tables technigue.
This indicates that the distortion measure defined by
(1, 2) is more eflicient than the distortion measure used
in the probability table approach (the temporal distor-
tion based on the scaled log-probability as described in
[4] was used for the probability tables approach).

3. OVERLAPPED CODEBOOKS

In this approach the temporal information is built im-
plicitly into codebooks by defining a search space for
each input vector z; consisting of codevectors y, with
indices in the interval k; min < & < ki maz. These code-
vectors form a sub-codebook and the sub-codebooks for
different neighboring indices are overlapped.

A simple example of overlapped codebooks is given
in Figure 3. The numbers enclosed in parentheses in
Figure 3 represent the sub-codebooks used for a given
utterance segment - the segment 2 1s processed using
the sub-codebooks 2, 3, and 4. The codebook training
is based on the fact that a codevector y, is accessed
during the search by input vectors with the normalized
time indices in the range igmin < 7 < Ik masr, and
hence should be trained only by these input vectors.
The interval limitsfor training can be determined easily
based on the interval limits used for search.

Sub-Codebooks

Input
Utterance
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Figure 3: VQ with Overlapped Codebooks

We believe that this structure of the VQ codebook
is a natural way to represent an input utterance for
two reasons. First, linear time normalization results
in an imperfect temporal match and as a consequence,
a given spectral shape may appear at a range of nor-
malized times in different repetitions of the same utter-
ance. Second, during a local-stationary segment, sim-
ilar spectral shapes may appear for a range of time-
normalized indices.
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4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the different
time-frequency representations, we built an isolated
word speaker independent recognizer similar to the
word-based pre-processor described in [4]. The feature
extraction is based on a non-uniform filter bank with
16 pass-bands covering the frequency range 140Hz to
72000z with center frequencies at the Bark scale. The
output of each bandpass filter is rectified, low-pass fil-
tered, and resampled to obtain an estimate of the sig-
nal’s spectral characteristics. Logarithmic compression
followed by spectral and then temporal normalization
are performed on the spectral vectors. During tem-
poral normalization, the time component is added to
the spectral characteristics vector as the 17th compo-
nent. Each codebook is trained with feature vectors
corresponding to a specific word in the recognizer’s vo-
cabulary. The test utterance is quantized with respect
to each of the codebooks and the output is the index
of the minimum distortion codebook.

The baseline recognizer using only the spectral com-
ponents obtains a performance of about 97% for speak-
ers who contributed to the training data or speakers
with similar pronunciations recorded in conditions iden-
tical to those used for training. The performance de-
grades significantly for foreign pronunciations or differ-
ent recording conditions. To enhance the performance
differentiation we used a mixed test set with a total
of 92 tokens per dictionary word (for 12 dictionary
words) out of which 52 tokens were similar (pronun-
clation, recording conditions) to the training set and
40 tokens were recorded in different conditions using
talkers with English as a second language. On this test
set, the baseline recognizer’s performance degrades to
about 89%. Our objective was to improve this perfor-
mance by combining spectral and temporal informa-
tion. As it will be shown below, an improvement in the
recognition rate from 89% to about 94% was achieved
by using the proposed techniques.

The temporal probability tables method described
in [4] was implemented to provide a reference for the
comparison of the systems described above. For the
optimal value of the parameter «, representing the mix
of spectral and temporal distortions (see [4]), the in-
troduction of probability tables reduced the recognition
error rate on the test set by about 1.6% resulting in a
recognition rate of about 90.7%.

The recognition error rates for the systems pre-
sented in this paper along with the required mernory
in words per dictionary entry is shown in Table 1. The
results indicate that using only one time component re-
sults in better performance (about 92%) than the prob-
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Figure 4: Error Rates for Different Overlap Ratios

VQ Method Error Memory /
Rate [%] | Codeword [KB]

Spectral Info. Only 10.87 1

Probability Tables 9.24 3.5

1 Time Comp. (TC) | 8.06 1.06

2TC 7.52 1.09

Overlapped Cbks 6.34 3.62

Table 1: Error Rates For Recognition Using Spectral
Temporal VQ

ability table approach at a lower memory requirement.
The multiple time components approach uses a variable
number of time components per dictionary word with
an average of about 1.5 components per dictionary en-
try. The result is a further performance improvement
to 92.5% at the cost of a negligible increase in mem-
ory size. The overlapped codebooks approach shows
the best recognition accuracy: 93.7% representing an
improvement of about 2.9% with respect to probability
tables at the expense of a larger memory requirement.

To obtain the result given in Table 1 for the over-
lapped codebooks method, a number of tests were per-
formed to measure the recognition rate for a variable
number of input intervals (partitions) and for different
overlap ratios. The outcome of these tests is shown
in Figure 4 and indicates the possible design trade-offs
between the number of partitions in the input utter-
ance and the amount of overlap between adjacent sub-
codebooks. '
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