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ABSTRACT

This paper’ presents a robust voicing estimation
algorithm for low bit rate harmonic speech coding.
The algorithm is based on waveform time-warping
followed by spectral matching based on voiced and
unvoiced local spectral models. The objective of time
warping is to reduce the effect of pitch variations on
the voicing decision. Several adaptive techniques are
used to improve the flexibility and robustness of the
conventional spectral matching algorithm. An
objective evaluation of the new voicing algorithm is
obtained by comparing to manually estimated voicing
values. Subjective tests of a sinusoidal coder using the
new voicing algorithm show  significantly better
performance thar the standard spectral matching
under both clean and noisy environment.

L INTRODUCTION

Voicing information plays an essential role in many
low-bit rate speech coders. It is well known that the pure
periodic excitation is a main cause of distortion in the
traditional LPC vocoder. A mixed excitation model was
introduced in the newer LPC type vocoders including the
new MELP standard [1] in order to alleviate this problem.
In the Multi-Band Excitation (MBE) model [3], a
voiced/unvoiced (V/UV) decision is assigned to a group of
harmonics of the fundamental frequency, and several
V/UV decisions are transmitted to the decoder to generate
synthesized speech which contains both harmonic and
noise components. A number of low-bit rate coders
including the sinusoidal transform coding (STC) coder [4]
use only one parameter called transition frequency, or
cutoff frequency, w,., instead of multi-band decisions to
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represent the voicing information. In such a model, the
frequency band below . is declared as voiced, and the
frequency band above o, is declared as unvoiced. This
simplified model gives similar performance with fewer
bits compare to the multi-band model. In all these
algorithms, the mixed excitation model and the voicing
estimation technique are important factors which affect
the subjective quality of the speech reproduction,
particularly in acoustic background noise environment

Time-domain and frequency-domain techniques have
been used to estimate the cutoff voicing frequency, w,
(called below also simply “voicing™). In the time-domain
approach, the speech signal is filtered into several
frequency bands and a voicing decision is made in each
band according to the maximum autocorrelation value
around the pitch lag for that particular band [1, 2]. The
time-domain method produces good results with low
complexity if the number of bands is not large. In the
frequency-domain technique [3, 4], the speech spectrum
(or the residual signal spectrum) is matched to a harmonic
syathetic spectrum model. If the matching is “good
enough” for a frequency band (according to an empirical
criterion), that frequency band is declared as harmonic-
like (voiced), otherwise the band is declared as noise-like
(unvoiced). An alternative frequency-domain method is
based on declaring as voiced the bands characterized by
equally spaced spectral peaks [5].

In this paper, we propose a new algorithm for
estimating the voicing frequency, ., using waveform
time warping combined with spectral matching. Time
warping is used to reduce the effect of pitch variations on
the voicing estimation. The algorithm computes voicing
decision for each harmonic in frequency domain. Then, a
transition frequency is determined from the voicing
information of all harmonics. The algorithm is flexible
and can be used for producing either multi-band voicing
decisions or a single voicing cutoff frequency.

In conventional spectral matching, the windowed
speech spectrum is matched to the spectrum of the
window function for each harmonic. This technique may
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fail because the speech spectrum around the harmonic
peaks may not have the perfect shape of the window
spectrum as a result of additive background noise and
pitch variations. Although it is not very difficult for a
human observer to judge whether a frequency range is
dominated by harmonic components or noise just by
observing the speech spectrum, a spectrum without ideal
harmonic structure may cause problems for conventional
spectral matching methods. Several techniques are
introduced in the proposed algorithm to improve the
flexibility and robustness of spectral matching including:
window zoom, window position jitter etc. - see Section II.

The performance of the algorithm was evaluated using
both subjective and objective criteria. For objective
evaluation, the voicing information was obtained
manually from the spectrum examination using visual
tools and employed as a reference for determining a
voicing error rate. For subjective evaluation, the
algorithm was embedded into a harmonic coder [8] and
compared to the standard spectral matching technique
under both clean speech environment and noisy
conditions.

I1. Veicing Algorithm Description

1. Time warping for voicing estimation

A well known problem in voicing estimation is the
effect of pitch period variation on the high frequency part
of the speech spectrum: the harmonic structure may be
vague in the high frequency range not because of low
voicing but due to pitch variations. For rapid pitch
changes, even if the speech has perfect periodicity, the
spectrum at high frequencies may look similar to that of
noisy (unvoiced) speech. This situation may result in
errors in voicing estimation. We propose to solve this
problem by using time warping with the objective to
minimize pitch variations within the analysis frame.

Time warping has been previously used in speech
coding with the objective of improving the efficiency of
the adaptive codebook in a variation of the CELP coder
called RCELP [6, 7]. In RCELP, the pitch-period contour
of the original residual signal is modified by time warping
to match a synthetic piecewise linear contour and this
results in fewer bits being required to transmit the pitch
delay. A piecewise linear pitch-period contour would not
improve voicing estimation. To recover the harmonic
structure in high frequency band, piecewise constant
pitch-period contour is needed. The time-warping
algorithm used to achieve a piecewise constant pitch-
period contour is described below.

Assume the pitch information P(f) of the original
speech signal x(f) is known. The objective is to transform
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the time-domain waveform x(¢), t = t,, ..., ¢; into a signal
&(t), T = 1, ..., T; which has constant pitch period P, in
the analysis window. Define the time-warping function
£ by:

du
== o))
The relationship between x(¢) and E(z) is given by:
£ =g+ [ €)= x(0) &)

At time ¢, the pitch P(f) should be modified to be P,
hence the time-warping function is:

Pm
&) = 20} @

The modified signal £(z) is output at times T;, T;y;, .... We
assume the time-warping function is constant during the
interval [7;, 1:»,] and given by

Pm
(=525

Introducing (5) into (3) we obtain the warping equation

L<t<t, G)

&(r,,l>=x(n+%(,ﬁ<m —w) ©)

The continuous time pitch information P(f) in (6) is
obtained by assuming linear pitch variation between pitch
estimation (update) points. The pitch period of the
original speech signal is estimated every 80 samples. The
analysis window ( N = 240 samples ) is centered at the
middle of the current frame. Denote the pitch period of
the current frame, i, as P;. The constant frame pitch P, is
chosen to be the pitch period of current frame, eg. P, =
P;. The pitch period for each sample in the analysis
window is approximated as

(Pi_Pi—l).n
. PH+—-—A7/2—— OSn<N/2 -
n)=
E+(R+1_R).(n—N/2) N/2<n<N
N2

The above warping procedure is done frame by frame.
The effect of the discontinuities at the frame boundaries is
alleviated by using a Hamming window which is applied
to the time warped signal before frequency analysis.

To illustrate the advantages of time warping, the
original speech spectrum and the time warped modified
speech spectrum for a typical voiced frame are shown in
Figure 1. The modified spectrum has clearly better
harmonic structure than the original spectrum.
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Figure 1. The original speech spectrum (solid line) and
the speech spectrum after time-warping (dash line).

2. Spectral matching

This section reviews briefly a standard spectral
matching technique. The speech spectrum is obtained for
each frame using a 240 points Hamming window centered
at the middle of the frame. The windowed signal is zero-
padded to generate a 1024 point DFT S(k), k = 0, 1, ...,
1023.

The speech spectrum in the neighborhood of each
harmonic is matched to a harmonic spectrum (which is
represented by the main lobe of the window spectrum)
and to a flat spectrum. A harmonic of the speech spectrum
is declared as voiced if the matching error for harmonic
spectrum is smaller than that for the flat spectrum. Denote
the fundamental frequency by f,. The matching range for
the /th harmonic is [I'fo - 0.5, I'fi + 0.5f,). The
corresponding range of the DFT coefficients is denoted by
[a;, b)]. The matching error for the /-th harmonic is:

E() =£I]S(k)|-—W(k)]2 I=1..,L )

where L is the largest harmonic number in the 4kHz
frequency range. The matching spectrum W(k) is either
the main lobe of the window spectrum or a constant for
each harmonic. If the length of [a;, b)] is larger than that
of the main lobe of window spectrum, the matching range
is reduced to the length of the main lobe.

3. Adaptive spectral matching

The spectral matching technique presented in the
previous section lacks robustness, particularly in
background noise conditions. In order to improve the
flexibility and robustness of the algorithm, the window
main-lobe spectrum is modified for better matching as
follows.

¢ The speech spectrum may not have very deep valley
between harmonic peaks. This may cause large
matching errors near the boundary of the window
spectrum main-lobe, as the valleys of the window
spectrum are deeper than those of the speech signal
spectrum. To avoid this problem, the lowest level of
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the speech spectrum is estimated by interpolation
between speech spectrum valleys and the window
spectrum is hard limited to be no lower than the
speech spectrum lowest level.

* The actual speech spectrum may have a wider main-
lobe than the window spectrum. An adaptive zoom
factor is introduced to widen the window spectrum
to fit the actual speech spectrum. The maximum
zoom factor is 1.5.

e The harmonic peaks of the actual speech spectrum
may not appear exactly at the multiples of f,. A jitter
parameter is used to allow the peak of the /th-
harmonic to move in the range [If; - 0.1/, , I'fo +
0.1-f5].

These adaptive modifications increase significantly the
flexibility and the robustness of the spectral matching
algorithm.,

An example which illustrates the advantages of
adaptive spectral matching is shown in Fig. 2 and Fig. 3.
The speech spectrum and the model window spectrum
used in the spectral matching technique described in
Section 2 are shown in Figure 2. It is easy to see that
there is a sigmificant mismatch between the two spectra
due to the different depth of spectral valleys and some
misalignment. Figure 3 presents the model window
spectrum obtained using the adaptive spectral matching
technique described in this section compared to the same
segment of speech spectrum as that of Fig. 2. It is quite
obvious that the spectrum obtained using the adaptive
technique matches the speech spectrum much better.

4. Voicing Decisions

The U/V decision for each harmonic is based on
comparing the ratio of harmonic matching error and flat-
spectrum matching error with an adaptive threshold. For
each harmonic if the error ratio is less than the threshold,
the harmonic is declared as voiced, otherwise it is
declared as unvoiced. The threshold is initially set to 1.0
and it is modified to be smaller if the high-band spectrum
energy is much larger than the low-band spectruin energy,
which means the speech is more likely to be unvoiced.
Above the frequency of 2000Hz, the threshold is
decreased gradually to favor an unvoiced decision.

Furthermore a single transition frequency can be
determined from U/V decisions for all the harmonics. The
transition frequency is set as high as possible provided
the ratio of the number of voiced harmonics and the
number of unvoiced harmonics below the transition
frequency is higher than a frequency-dependent threshold.
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Figure 2. The original spectrum (solid line) and the
harmonic model spectrum (dash line).
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Figure 3. The original spectrum (solid line) and the
modified harmonic model spectrum (dash line).

IV. Results

An evaluation of the objective performance of the
proposed algorithm was done by comparing the cutoff
frequency obtained from voicing program to the manually
determined voicing number. For manual voicing
determination, the spectrum of the speech signal was
-observed using a visual tool and a tramsition frequency
was estimated each 10ms. Since the time-warping
technique is not applied to the speech signal used for
manual voicing determination, the voicing result obtained
from time-warped speech is not compared to the manual
voicing information.

The objective results, presented as a distribution of the
normalized voicing error, are shown in Table 1. For both
male and female speakers, the new algorithm reduces
significantly the number of large voicing errors. The
proposed voicing algorithm was embedded into a
harmonic coder [8] for subjective quality testing. A
conventional spectral matching based voicing algorithm
similar to that used in MBE was also implemented for
comparison. The new voicing algorithm was found to give
better synthesized speech compared to the conventional
method under both clean and noisy environment. The
subjective tests indicate a preference of about 42.2% for
the new voicing estimation versus 10.9% for conventional
method with 46.9% of the same quality.
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Table 1: Objective results for voicing algorithm

Conditions | Normalized | Conventional| Adaptive
voicing error| Method (%) | Spectral
Matching
< 30% 80.77 86.41
Female < 60% 10.57 9.89
260% 8.66 3.70
< 30% 67.85 79.42
Male < 60% 15.62 14.05
260% 16.53 6.53
< 30% 74.17 82.84
Total < 60% 13.15 12.01
260% 12.68 5.15
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