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Abstract

In this paper, we present a comprehensive study of a
quantization technique for variable dimension spectral
vectors that we call weighted non-square transform VQ
(WNSTVQ). This technique employs generalized
perceptually weighted linear dimension conversion to a
fixed dimension vector followed by vector quantization
(VQ). We show that the total error can be separated into
the weighted modeling error and the weighted
quantization error. Perceptual weighting in the modeling
and the quantization of the variable dimension spectral
vectors is essential for harmonic coding systems where the
spectral vectors are obtained by harmonic sampling of the
spectrum of the LP residual signal. The paper presents
codebook search procedures for the WNSTVQ and
experimental results for different types of transforms.

1. Imtroduction

Efficient quantization of the variable dimension
spectral vectors is a crucial issue in low-bit-rate harmonic
(sinusoidal) speech coders [1-5]. In these coders, the
spectral magnitude vector is obtained by sampling the
speech magnitude spectrum or the LP residual magnitude
spectrum at multiples of the pitch frequency. This
sampling procedure generates a variable-dimension vector
of harmonic spectral peaks. The vector dimension, N, is

inversely proportional to the pitch frequency, f,,, and is
FS

N{sz

where Fjis the sampling frequency, which is 8 kHz for a

telephone bandwidth signal. Standard VQ cannot be
directly applied to the wvariable-dimension vectors of
harmonic spectral magnitudes. A theoretically optimal
solution would employ a different codebook for each
possible dimension of the spectral vectors. However, this
optimal solution is quite impractical and results in
prohibitive requirements on storage space for the
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codebooks and on the size of the training set for codebook
design. The prevailing approach for the quantization of the
variable-dimension spectral vectors is to convert them into
fixed-dimension vectors prior to quantization. The decoder
extracts the quantized fixed-dimension vector and, assisted
by the quantized pitch value, converts it back into the
quantized variable-dimension vector.

Several dimension conversion techniques have been
developed for the quantization of the -variable dimension
spectral vectors. In [2,6] an all-pole (LP) model or a
discrete all-pole (DAP) model is used to approximate the
spectral envelope using a fixed number of parameters. The
model parameters are quantized using a fixed-dimension
VQ. In band-limited interpolation (BLI) [7], the variable-
dimension vectors are converted into fixed-dimension
vectors by sampling rate conversion which preserves the
shape of the spectral envelope. The concept of spectral
bins for the dimension conversion is employed in variable
dimension vector quantization (VDVQ) [8]. In VDVQ,
the spectral axis is divided into segments, or bins, and
each spectral sample is mapped onto the closest spectral
bin to form a fixed-dimension vector for quantization.
Truncation method [9] and zero-padding method [5]
convert the variable dimension vector to a fixed dimension
vector by simply truncating or zero-padding.

We suggest classifying the dimension conversion
approaches as linear or nonlinear. Such a classification can
lead to a better understanding and generalization of
various dimension conversion schemes.

In linear dimension conversion, the encoder converts
the variable-dimension vector into a fixed-dimension
vector using a (vector) linear function. Similarly, the
decoder uses the inverse linear function to convert the
decoded fixed-dimension vector into a variable-dimension
vector. This general approach was proposed in [10] and is
called non-square transform (NST) or non-square
transform VQ (NSTVQ).

It was pointed in [S] that known linear dimension
conversion schemes, such as BLI, VDVQ, sample
truncation, and zero-padding could be treated as special
cases of NSTVQ.

Nonlinear conversion schemes perform similar
conversions, but use nonlinear mapping for dimension
conversion. Nonlinear dimension conversion schemes are
based primarily on fitting a nonlinear regression model to
the harmonic spectral samples. The LP and the DAP
approaches described above belong to this category.



2. Non-square transform vector quantization

Lupini and Cuperman [10] suggested the NSTVQ for
the quantization of the variable-dimension spectral vector.
Fig. 1 shows an overview of the process for quantizing

variable-dimension spectral magnitude vectors using
NSTVQ.
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Fig. 1. NSTVQ overview

In NSTVQ, a forward transform matrix B maps the N
elements of x into a fixed-length M element vector y:

y=Bx M
For a square invertible matrix B, x can be reconstructed
precisely using the inverse matrix. However, for a non-
square transform, in general, only an estimate of x,
denoted here by X, can be obtained:

X = Ay 2
where A is a generalized inverse transform matrix of size
NxM . It is important to remember that even for fixed M,
A and B belong to a family of matrices, since their
dimensions depend on N. We are looking for a pair of
transform matrices, A and B, which are chosen to
minimize the modeling distortion D,, defined as the mean

square error between the vectors x and X :
- -2
D, (x,X) = ||x - x”
It has been shown in [10] that, for the case N=M , D,

can be minimized by choosing the matrix B for given A
such that:

1
B= (ATA)_ AT
or by choosing A for given B:

A=BT (BTBT1

For the case of dimension expansion, where N < M , the
matrix B can be chosen given A:

1
B=AT (AAT)'
or matrix A can be computed from B by
1
A= (BTBT BT
For dimension expansion with an optimal choice of
matrices, D,,(x,X)=0. When the rows of matrix A are

3

C))

orthonormal to each other, a very simple relationship
between A and B can be obtained:

B=AT
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3. Weighted harmonic spectral quantization

In practical applications to speech coding, the
distortion measure has to account for perceptual weighting
of the representation error. Perceptual weighting was used
by Nishiguchi et al. [11], who suggested spectral vector
quantization with a weighted mean squared error (WMSE)
measure. This distortion measure evaluates the degree of
matching between the original speech spectrum and the
quantized speech spectrum based on the perceptual
distortion in the speech domain. The WMSE is given by

D, =x-HTWIWx-3), )
where X is the quantized version of x. If the variable-
dimension spectral vector is obtained from the LP residual

signal, the diagonal weighting matrix wTw incorporates
the spectral contribution of the LP synthesis filter and a
perceptual weighting measure. The diagonal element of W

at the nth harmonic is gl ven by:
2
j ;mfp

wnn=P("fp)'lA(lz) z

where f, denotes the pitch frequency, F the sampling

©®

frequency, and P(nf,) a perceptual weighting function.
Although for our application in harmonic coding of the
residual signal we use a diagonal weighting matrix, in the
following theoretical analysis of dimension conversion
and vector quantization, W will not be restricted to be
diagonal.
3.1. Weighted non-square transform

To derive the optimal relation between the forward and
the inverse non-square transforms, we will choose a pair
of transform matrices, A and B, such that X defined in (2)
is a “good” estimate of the original vector x. We are
interested in matrices which minimize the weighted
modeling distortion D,,,, :

Dym =x-TWTWx-%)
=(x-Ay)" WTw(x - Ay)

Assuming that A is given, we can consider the
minimization of the distortion D,,, as a function of the

Y

vector y. The vector y,,, which minimizes the distortion

is obtained as the solution to the following set of linear
equations:

ATWTway,,, =ATWTWx ®)
In the case when N > M and A is of rank M (i.e., the M
columns of A are linearly independent), the M X M matrix

ATWTWA is of full rank and has an explicit inverse
which gives a unique solution vector y ,,, :

Vopr = ATWIWA)TATW Wy ©)



Comparing (9) with (1) we see that in order for the matrix
B to produce the fixed-length vector y which minimizes
the weighted modeling distortion, B must have the form:

B=ATWTwa)1ATWTw (10)
and the inverse equation which computes A given B is:
A=(WTVV)—1BT(BW’1W_TBT)_I an
In the case when N<M and A is of rank N (i.e., the N rows
of A are linearly independent), the optimal transform
matrices are the same as those derived in section 2.
3.2 Weighted non-square transform VQ

As shown in Fig. 1, the non-square transform matrix B
derived above converts a variable-dimension vector x into
a vector y which can be encoded using a fixed-dimension
VQ. The quantized fixed-length vector § is then

transformed into the quantized variable length vector X
using :

X = Ay (12)
The WNSTVQ quantizer should be designed to minimize
the total weighted distortion D,, defined by (5). It is easy

to rewrite D,, as: ,
D,=x-)W'WE-%)+ExX-8)"WWE-5%)
+2(x— Ay)" W'W(Ay - AY)
=D, +D, g
+2(x~Ay)" W W(Ay - AY) (13)
By combining (1) and (10) for the case N > M , or (1) and
(4) for the case N<M, it can be shown that the last term in
(13) is equal to zero. The total weighted distortion D,,
can be hence expressed as:
Dy, =Dy +D,, (14)
The first term in (15) is the weighted modeling distortion,
D, » due to the non-square transform and the second
term, qu , is the quantizer distortion due to the VQ and is
given by: -
Dy, =G-)"WIWE-3%) (15)
The fact that these distortions can be separated shows that

once we have chosen a transform matrix A or B the
minimization of the total weighted distortion D,, is

equivalent to the minimization of D,y . The distortion

measure used in VQ training and search, then, is given by
(15).
Substituting (2) and (12) into (15), We can rewrite the
weighted quantizer distortion as:
Dyy=(y-HTATWT WAy -§) (16)
The last equation shows that the minimization of D,y in

the variable-dimension vector domain (with the weighting
matrix W) can be obtained by minimizing a weighted
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quantization error for the transformed fixed-dimension
vector, using the weighting matrix ATWTwA .

If ATWTWA isa diagonal matrix, the conventional
vector codebook search procedure can be used by
transforming the variable-dimension vector to a fixed-
dimension vector, and then performing the search with
modified quantization weights. In this case (16) is a simple
and practical way to implement the WNSTVQ. For a
diagonal W matrix like in (6), it is easy to show that

ATwWTwaA s diagonal for zero-padding,
truncation, and VDVQ.

In this study, in order to investigate the best possible
WNSTVQ scheme, we did not restrict ourselves to a

diagonal ATWTWA . For a non-diagonal matrix, the
search described by (16) can still be used, however, this
search may result in prohibitive complexity. First, a non-
diagonal matrix results in high-complexity for the
computation of the WMSE in (16). Second, the input
variable-dimension vector x is first converted to the fixed-
dimension vector y by the forward non-square transform
matrix B which depends on the spectral weights according
to (10), and has to be recomputed for each input vector.

To avoid this problem we propose a codebook search
scheme in which rather than transforming the input vector
to a fixed dimension, the codebook is transformed to the
variable dimension as shown in Fig. 2. The non-square
transform A is applied to the fixed-dimension codebook
{y 13Y 25eeeesY L} to obtain a new codebook,
{AY;sAY ;s Ay, }, which has the same dimension as
the input vector x. The dimensions of the transform matrix
A depend on the input vector x. The search is actually
performed in the new variable dimension codebook. For
the case of dimension reduction, using an M-dimensional
codebook of size L and the search procedure based on
(16), the number of floating point operations (worst case)
needed to obtain the matrix B using (10) is

AN} /3 +(M +5)N2 e + MN e, Where N, is the
maximum length of the wvariable-dimension spectral
vector. The number of operations to transform the vector x
into a fixed-dimension vector y is MN,,,, . The number of
operations for codebook search in the fixed-dimension
vector domain is L(M 2 +2M) . Therefore the number of
operations per vector for the search procedure based on
(16) is
AN /3 +(5+ MNP gy + 3MN . + L(M? + 2M)
The number of operations per vector for the second search
procedure of Fig. 2 is
LMN 0y +2LN 00

which may result in significant savings with respect to the
first search procedure.

sample
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Fig. 2. Codebook search procedure for the second procedure

4. Experimental Results

In this section we present the experimental results of
the WNSTVQ systems.

4.1. Distortion criteria

We used both root square spectral distortion (SD) and
weighted signal to noise ration (WSNR) as distortion
measures which are defined below.
e  Spectral Distortion

l Ni—l
—_— 10 loglo
Nk n=0

1
SD =—
'K%

A

xk[n

2 2
Xk [n]} [dB]
t[n]

e Weighted SNR

2, (aln)?
n=0

N,—1
$ w2, (xplnl— £ [n])?
n=0

where K is the size of the database, N is the dimension

WSNR =

2 [dB]
k

x|

of the original vector x;, X; is the quantized version

ofx , and x;[n] is the n™ element of the vector x r- The
weights are defined by (6) and the weighting
function used in our experiments is:

A(z/n)
IA(Z/72)

where 3, =0.94 and }, =0.7.

wﬂ"

2mf,
FS

P(nf,) =

J
z=e

4.2 Experiments and results

The speech material used in our experiments consists
of sentences spoken by male and female talkers and
sampled at 8 KHz. The LP residual signal was obtained by
a 10™ order LPC filter. The spectral vectors were extracted
from the residual signal every 10 ms and normalized by a
gain factor. Our database includes 32396 vectors of
dimension 48 or smaller. Of the 32396 vectors, 23961
vectors were used for codebook training and 8435 vectors
were used for testing.

The first experiment was designed to test the
performance of the WNSTVQ as a function of the
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codebook dimension, M. We tested the values of 10, 24,
32, and 48 for M, incorporating both dimension reduction
and dimension expansion into the WNSTVQ systems for
M=24 and M=32. We chose a non-diagonal transform
matrix A based on the non-square DCT-II transform
suggested in [10] with elements given by

1/2 . .
[%] C; co{gl—:%%(l—:g] forj =1,....minV, M)

AG, f)= andi=1..,N

0 Otherwise

where C; =1 for all { except C; =1/ V2.

For each M we designed an M-dimensional 2-stage
MSVQ codebook using 6 bits per stage. Figures 4 and 5
show the WSNR and the SD versus M, respectively.
Increasing the value of M results in higher WSNR and
lower spectral distortion. The figures show that only a
minor performance gain is obtained by increasing M
beyond 32. In fact the WSNR for M=32 is only about 0.18
dB lower than the highest WSNR obtained at M=48.

The second test compared the non-square DCT based
WNSTVQ with the zero-padding WNSTVQ with M=48.
The elements of the zero-padding matrix A are given by:

/.___/-0
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—=—Testng dta

32
Fixed Dimension (M)

Fig. 4. WSNR vs. fixed-dimension M DCT based

WNSTVQ
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Fig. 5. SD vs. fixed-dimension M for DCT based

WNSTVQ
1 i=jand i=12,.,N; j=12,.,N
0 otherwise

A(i,j)={

Conventional VQ search and training procedures can be
applied directly in zero-padding WNSTVQ since the



weighting matrix is diagonal. A 48-dimension 2-stage
MSVQ codebook with 6 bits per stage was designed. We
call this scheme ZP-48.

Table 1 shows that the WSNR for the ZP-48 scheme is
0.56 dB lower than that of the DCT-48 scheme, and its
spectral distortion is 0.18 dB higher. However, a tradeoff
exists between the performance, the complexity and the
storage requirements for each transform type and different
values of M. For example, DCT-10 has the lowest storage,
ZP-48 the lowest complexity, and DCT-48 the best
performance. For all of the quantization schemes using an
M-dimension k-stage MSVQ configuration with b bits and
S candidates per stage, the number of floating point
operations for the codebook search is of the order of

A(k-1)S+12°M . For the WNSTVQ with a non-

diagonal weighing matrix (the DCT-M schemes), the
additional complexity due to the codebook transformation

is in the order of k2° MN, max -
Table 1 Comparisons between various schemes
Schemes WSNR | Complexity | CB Storage
(dB) (MOPV*) (word)
DCT-48 16.20 0.34 6144
DCT-32 16.03 0.24 4096
DCT-24 15.32 0.19 3072
DCT -10 13.12 0.11 1280
ZP-48 15.64 0.05 6144

*MOPYV : Million Operations per Vector

The theoretically optimal solution for quantization of
variable dimension vectors uses a codebook for each
possible dimension. In order to assess the performance
improvement resulting from the wuse of multiple
codebooks, we tested both zero-padding and non-square
DCT based WNSTVQ with multi-codebook quantization
schemes which are successively closer to the optimal
solution. '

Table 2 Dimension range for multi-codebook schemes

# of codebooks 1 2 3
dimension range #1 10-48
dimension range #2 10-29 30-48
dimension range #3 10-22 23-32 | 33-48

Table 2 shows the dimension ranges for the 3 multi-
codebook quantization schemes. For example, in the first
quantization scheme, all vectors are expanded to
dimension 48 and a single codebook is used. For the
second quantization scheme, vectors of dimension smaller
than 30 were expanded into vectors of dimension 29, and
vectors of dimension 30 or above were expanded into
vectors of dimension 48 and two codebooks were used.
For each codebook in each dimension range, we designed
a 2-stage MSVQ with 6 bits per stage. Figure 6 shows the
WSNR versus the number of codebooks for the zero-
padding and the non-square DCT methods.
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Fig. 6. WSNR vs. number of codebooks for various multi-
codebook quantization systems. (12 bits/vector)

5. Conclusions

In this paper we presented a study of a weighted linear
dimension conversion and quantization scheme for
harmonic spectral vectors. We showed the relations
between the optimal forward and inverse transform
matrices and proved that the total weighted distortion can
be separated into a weighted dimension conversion
distortion and a weighted quantization error. We provided
a complexity analysis for the possible implementation
systems of our WNSTVQ, and presented simulation
results showing the tradeoffs between complexity,
memory storage, and performance for several WNSTVQ
systems.
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