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ABSTRACT

This paper introduces a new algorithm for scalable coding of
wideband audio signals. The technique is based on quantization of
bi-orthogonal wavelet transformed coefficients using a perceptual
zerotree method. An initial zerotree estimate of the wavelet
coefficients is computed, followed by scalar quantization of the
coefficients according to perceptual thresholds. The choice of
wavelet decomposition and encoding parameters for each frame is
adapted to the source characteristics employing a rate distortion
criterion. The scalability of the coder is due to the tree structure,
which enables graceful degradation with decrease in bit rate.
Preliminary subjective tests indicate near-transparent quality for
average bit rates in the range of 1.5 to 2.5 bits per sample.

1. INTRODUCTION

Low bit rate, scalable coding of 8 kHz bandwidth audio signals is
required in a growing number of applications, including audio
over IP and wireless audio transmission. Existing audio coding
algorithms use either linear predictive coding (LPC) or the
discrete cosine transform (DCT) as their central module, coupled
with quantization based on perceptual masking techniques. The
former method tends to perform better with speech signals, while
the latter offers better music performance. However, owing to the
nonadaptive nature of the transform, the compression performance
relies heavily on the stationarity of the signal. Furthermore,
psychoacoustic studies [4][7] point out several important time-
frequency localization properties of the auditory system, as well as
the fact that the human ear performs a nontrivial “location-
frequency” transformation. Wavelet packets (WP)[2][3] provide a
computationally viable framework for exploiting this time-
frequency tradeoff, along with flexibility to adapt to signal
nonstationarities. These observations motivate investigation of
wavelet decomposition as a tool for audio coding. (e.g., [3].)

The starting point of this work is the zerotree (ZT) coding method
[5] and in particular, a variant which was proposed by Said and
Pearlman [6]. This method exploits well the statistical properties
(and hierarchical correlations) of the wavelet coefficients when
applied to images. There are three main difficulties in adopting ZT
for audio coding: (1) the standard statistical assumptions on the

hierarchical correlations of image wavelet coefficients may not be
valid for audio signals, (2) the method fails to exploit the known
properties of the human ear and, (3) the method fails to take into
account the dynamic range of audio signals.

This paper describes a novel algorithm for scalable coding of
wideband audio. The algorithm incorporates perceptual
considerations into an adaptive rate-distortion (RD) framework for
ZT coding of a wavelet-decomposed signal. The transform and
coding steps are both (frame) adaptive, where the adaptation
involves RD optimization. The resulting coder is hence called the
perceptual zerotree wavelet (PZW) coder. The paper is organized
as follows: Section 2 describes the coder and details the coding
modes. Section 3 provides preliminary experimental results.
Section 4 consists of a summary and discussion of directions for
future work.

2.   PERCEPTUAL ZEROTREE CODING

Figure 1 shows the functional block diagram of the PZW audio
coder. The encoder operates on a frame by frame basis.  A frame
of audio, s, undergoes critically sampled forward wavelet

transformation (FWT) to produce a vector of wavelet coefficients,
w. These coefficients are then mapped to the nodes of a binary
tree, denoted by p, and quantized using a perceptual zerotree

Figure 1.  Block diagram for the PZW encoder (top)
and decoder (bottom).
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(PZT) coding algorithm. The quantization and decomposition
parameters are controlled by an RD  module, which adapts the
operation to the prescribed level of bit rate or distortion.

The decoder reconstructs p, maps the tree back to a standard
wavelet coefficient array, and performs the inverse wavelet
transform (IWT) to obtain the reconstructed output of s. Note that
FWT and IWT are lossless, and the reconstruction error is only
due to PZT quantization

2.1 The Wavelet Transform

Figure 2 shows the implementation of the wavelet transform using
subband filtering, wherein the signal undergoes successive
filtering by a bank of quadrature mirror filters (QMF) and down-
sampling by a factor of two. The QMF filter bank we used in
simulations is the bi-orthogonal 9-7 tap Daubechies type [1]. We
further implemented the “symmetric extension” technique at
frame boundaries.

We employ a signal-adaptive decomposition that differs from the
traditional (logarithmic) wavelet decomposition. The
decomposition is made adaptive by varying the decomposition
depth and allowing a split at any one of the two terminating nodes.
The decomposition is completely characterized by two parameters;
the depth of the decomposition and a binary decision at every
depth indicating which of the two terminating nodes is split
further. Figure 2 shows examples of some possible

decompositions, with 2(a) being the traditional decomposition.

2.2 Binary Tree Formation

If we associate a wavelet coefficient with a position in the time-
frequency plane containing the most energy of its basis function,
we can define a binary tree in the plane. Figure 3(a) shows a
mapping for a frame of 16 samples, for the decomposition given in
3(b). Except for the root node, each node grows two branches,
which partition into two parts the temporal region of the parent
node at a different frequency band. Figure 3(a) also shows the
labeling convention used for the tree. The wavelet coefficients of
level l in the tree are stored in vector p as the elements pi where
the index i satisfies 2l-1 <  i  <2l+1 .

2.3 Perceptual Zerotree (PZT) Quantization

After organizing the wavelet coefficients into a binary tree
structure, we quantize them using a PZT coding method. The
underlying technique is based on the ZT algorithm [5][6] which
aims to capture the nonlinear statistical correlation of wavelet
coefficients in the time-frequency plane. ZT quantizes the
coefficients by transmitting a significance map (SM) using a
variable length prefix code. The SM indicates the location of all
coefficients that are above a threshold. This procedure is iterated a
prescribed (fixed) number of times, each time reducing the
threshold by a factor of 2. In this way ZT achieves quantization by
transmitting the binary representation of the coefficient.

PZT however, transmits only the most significant bit of the
coefficient. We let the iterations run as in the ZT, but once the
first threshold is known for which the coefficient becomes
significant, no more information about that coefficient is
transmitted. Using this information, PZT generates an initial
estimate of the coefficient and quantizes it using perceptual
considerations. Quantization based on perceptual considerations
assigns different error and bit allocation for the wavelet
coefficients depending on their position in the frequency scale, the
spectrum of the signal, and the initial estimates. The starting
threshold of the PZT iteration is adapted to the frame energy
thereby accommodating a wide range of signal levels.

The initial estimate, ei, of the coefficient, pi, is set equal to the
threshold value, given by:

  ipne ii
n

i
i ∀==    log  where2 2
  

Once the initial estimate of a wavelet coefficient ei is known, the
bit allocation, bi, required to scalar quantize a coefficient
according to a simple perceptual model is given by:

The model controls the amount of noise introduced in different
frequency bands by quantizing each coefficient to a fixed average
SNR, given by the constant K.

Figure 3. Time-Frequency map and binary tree formation
using wavelet transform

Figure 2. Examples of possible wavelet decompositions.
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2.4 Rate-distortion (RD) tradeoff control

A RD module (see Figure 1) controls the encoding operation. This
module adapts the encoding parameters on a frame-by-frame basis
to ensure that the available rate is efficiently used. We adapt
several coding parameters (as given below) to the current frame
statistics, and thereby improve the rate allocation to the frames by
achieving better consistency in the level of distortion from frame
to frame. The adaptation is based on an operational RD tradeoff,
the distortion criterion being the segmental signal-to-noise ratio
(SSNR). The RD module adapts the following encoding
parameters per frame:

• Number of iterations (threshold steps) for ZT encoding
• Depth of wavelet decomposition
• Binary split decision during wavelet decomposition.

The set of permissible parameter values is restricted to maintain
moderate complexity.

2.5 Scalability

ZT transmits the binary representation of a coefficient using a
progressive transmission method making it a bit-wise scalable
technique. The only bottleneck in making PZT scalable is the
transmission of the bit allocation information bi, which is
calculated from the average energy for each level, El, after
obtaining the complete initial estimate of wavelet coefficients.
However, transmitting El at beginning of each frame easily
eliminates this problem. Further, the bits required for El (≈ 0.1
bps) can be saved by transmitting El in lieu of one of the wavelet
coefficient in that level.

For each frame, the scalable bit stream transmitted to the decoder
includes the following: (1) depth of wavelet decomposition, (2)
binary split decision, (3) number of iterations, (4) average energy
in each level of the tree El and, (5) for each iteration, initial
estimates and the quantized coefficients.

The decoder can stop after any iteration and still reconstruct the
wavelet coefficients, thus making PZW a highly scalable coding
scheme. Preliminary subjective tests show a very graceful
degradation in quality as the number of  iterations is reduced.

3. RESULTS

Subjective evaluation of different coding modes was done using
A/B tests on a database of 8 kHz bandwidth music and speech
samples. The database included male and female speech, opera,
modern rock and trumpet samples. The test was done with 8
untrained listeners and forced-choice A-B comparisons. The frame
size in all the experiments was kept to a constant value of 512
samples.

Three coding methods were evaluated: ZT, PZW and G.722. The
ZT method used a fixed transform (depth=9, split=0), a fixed
number iterations (=6) and no perceptual considerations. The
PZW algorithm was run with a fixed target SSNR, adaptive
wavelet decomposition and PZT quantization as described in
section 2.  Tables 1 and 2 give the result of the A/B tests. The bit
rate indicated is the average rate obtained over the entire database.
For PZW and ZT, the variation in bit rates for individual files was
in the range of 24-40kbps.

Table 1 shows that the PZW approach outperforms the ZT, 56% to
44%, despite the lower average rate used for the PZW (30 kb/s
compared to 35 kb/s for the ZT).  When compared to G.722 at
48kbps, the PZW was preferred 70% to 30% despite the lower
average bit rate of 30kbps.

4. CONCLUSION

In this paper we presented a scalable method for coding 8 kHz
bandwidth audio using wavelet decomposition and perceptual
zerotree coding. The coder is successful in exploiting the time-
frequency domain properties and a nonlinear frequency mapping
of wavelet decomposition using the zerotree coding. Perceptual
considerations and a rate-distortion framework were incorporated
in the coder. Initial experiments show an average bitrate of 1.5 to
2.5 bits per sample for near-transparent quality.  Better masking
models and a more suitable distortion measure are expected to
yield better results.
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Test PZW @ 30 kbps G.722 @ 48kbps

Music 0.70 0.30

Speech 0.66 0.33

Total 0.69 0.31

Table 2.  A/B test result for PZW and G.722

Test PZW @ 30 kbps ZT @  35 kbps

Music 0.58 0.42

Speech 0.55 0.45

Total 0.56 0.44

Table 1. A/B test result for ZT and PZW


