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Abstract— Adaptive prediction is an important tool for efficient
compression of non-stationary signals. A common approach to
achieve adaptivity is to switch between a set of prediction modes,
designed to capture variations in signal statistics. The design
poses several challenges including: i) catastrophic instability
due to statistical mismatch driven by propagation through the
prediction loop, and ii) severe non-convexity of the cost surface
that is often riddled with poor local minima. Motivated by
these challenges, this paper presents a near-optimal method
for designing prediction modes for adaptive compression. The
proposed method builds on a stable, open-loop platform, but
with a subterfuge that ensures that the design is asymptotically
optimized for closed-loop operation. The non-convexity is handled
by deterministic annealing, a powerful optimization tool to
avoid poor local minima. To demonstrate the impact of the
proposed approach on practical applications, we consider adap-
tive, transform-domain predictor design for enhancing standard
video coding. Experimental results validate the benefits of the
proposed design in terms of significant performance gains for
both predictive compression systems in general and video coding
in particular.

Index Terms— Predictor design, deterministic annealing,
asymptotic closed-loop, video coding, transform domain temporal
prediction.

I. INTRODUCTION

L INEAR prediction is an integral part of most modern
compression systems [1]–[3], tasked with removing

temporal or spatial redundancies in signals. Often, the design
of prediction filters assumes that the signal is stationary.
However, most real-world signals are non-stationary and nat-
urally call for adaptive compression systems. A common
paradigm to achieve adaptivity involves block-based encoding,
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wherein the source signal is partitioned into blocks and the
prediction filters can be adapted per block. However, sending
per-block prediction filter specification would incur consider-
able overhead. Instead, a common, cost-effective approach is
to design a ‘codebook’ of predictors, which is also available
to the decoder, and have the encoder convey the index of
the predictor (mode) used to predict a given block. The
performance gains of such an adaptive system critically depend
on efficient design of all prediction modes.

The design of a codebook of prediction modes poses several
challenges. The design can be viewed as ‘quantization’ of the
prediction filter parameter space. The cost-function depends
on both the codebook and the encoder decisions (assigning
codebook entries to individual signal blocks). Note that the
cost is piece-wise constant with respect to the encoder deci-
sions (the encoder does not modify a decision until the block
content changes sufficiently) which implies that the corre-
sponding derivatives vanish almost everywhere. This makes
it impossible to employ standard gradient-based algorithms.
A common remedy is to design predictors in a “K-means”
clustering fashion [4], wherein the design iterates between
choosing the best prediction modes for the blocks (i.e., nearest
neighbor rule for the encoding decisions) and then updating
the prediction modes (centroid rule). It is well known that the
performance of greedy approaches depends on initialization,
and there is substantial risk of getting trapped in poor local
optima. The prevalence of local optima, coupled with the
piecewise constant property of the cost function, make the
design of a codebook of prediction filters a highly challenging,
non-convex optimization problem.

The problem is further exacerbated by stability issues that
arise due to the coder’s prediction loop. Specifically, note
that the optimal set of prediction filters depends on the
reconstructed signal from which predictions are made. But
the reconstructed signal itself depends on the prediction filters
in use. Clearly, we have a “chicken and egg” problem here,
and this complex interplay between predictors and recon-
structions makes codebook design a challenging problem.
The dependency between predictors and reconstructions calls
for an iterative design technique, wherein optimal predictors
are designed for the given reconstruction statistics, and then
the reconstructions are updated with the designed predictors.
In the standard closed-loop technique (see for e.g., [5] for
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quantizer design and [6] for a stochastic gradient version),
the predictors designed in a given design iteration, i.e., given
a training set of reconstructed blocks, are then plugged into
the encoder and applied to a newly reconstructed signal in
the next iteration, which will likely exhibit different statistics.
This statistical mismatch can (and often does) grow as the
encoder proceeds down the sequence, due to propagation
through the prediction loop, causing severe design instability.
As an effective remedy, the asymptotic closed-loop (ACL)
design paradigm was proposed in [7]. ACL operates in an
open-loop fashion by predicting from the (now fixed) recon-
structed samples in the previous iteration. Thus, the predictors
are applied to the same reconstruction statistics they were
designed for, thereby eliminating statistical mismatch and
ensuring better reconstructions over iterations. Nevertheless,
as will be explained in Section II, on convergence, the design
effectively operates in closed-loop fashion, and optimizes the
predictors for closed-loop operation.

ACL provides a stable design platform. However, the design
is still plagued by many poor local minima of the cost function.
To address this, we propose a deterministic annealing (DA)
approach to design prediction modes. DA [8] is a power-
ful non-convex optimization tool, inspired by principles of
statistical physics and information theory. The probabilistic
nature of DA yields an effective cost function via expectation,
which is differentiable with respect to the prediction modes.
At high temperature (maximum randomness), at the early
stage of the algorithm, all the prediction modes are shown
to coincide (at convergence all modes are identical), regard-
less of initialization, and they will only separate (through a
sequence of phase transitions in the physical analogy) as the
temperature is lowered. In other words, DA is independent of
the initialization. Its annealing schedule gradually reduces the
randomness of the solution so as to avoid poor local minima.
The overall method proposed herein embeds ACL within the
DA framework. The benefits of DA are complemented by
the stable design platform of ACL, effectively addressing the
central design challenges enumerated above.

The design of prediction modes has many practical applica-
tions involving adaptive prediction. In this paper, we consider
an important application, namely, predictor design in video
coding. Modern video coders exploit temporal correlations
by employing motion compensated prediction [3], [9]. Simple
pixel copying of the best (motion-compensated and possibly
interpolated) block from the reference frame is used to obtain
the prediction signal. The resulting prediction error is then
decorrelated by a transform, typically the discrete cosine trans-
form (DCT), and the transform coefficients are quantized and
sent to the decoder. Such pixel-to-pixel temporal prediction
is suboptimal in that it ignores significant spatial correla-
tions in the video signal. Several approaches that account
for spatial correlations include multi-tap filtering [10], [11]
and three-dimensional subband coding [12], [13], which
incur high encoder complexity. An earlier work from our
lab [14] proposed an effective way to account for complex
spatio-temporal correlations by first applying the transform
to spatially decorrelate a block, and subsequently performing

temporal prediction of the resulting uncorrelated transform
coefficients. The temporal evolution of each transform coef-
ficient in a block, along its motion trajectory, is modelled
as a first order auto-regressive process. Thus we have a
set of uncorrelated temporal processes, each representing the
temporal evolution of a given coefficient (or “frequency”)
in the block. Moreover, transform domain temporal predic-
tion (TDTP) perfectly captures and exploits the variations in
temporal correlations across frequencies, which are otherwise
masked in the pixel domain.

Modern video coders employ sub-pixel motion compensa-
tion for improved prediction, by interpolating the reference
blocks to fractional pixel accuracy. Interpolation filters also
use information from outside the block boundary, a fact that
must be accounted for when optimizing prediction modes.
Moreover, sub-pixel interpolation filters, when considered in
the transform domain, interfere with the operation of TDTP
filters. Thus, to completely disentangle the effect of interpola-
tion filters, first handling interpolation within the block [15],
and later to account for boundary information through the
construct of extended block TDTP (EB-TDTP) [16] were
proposed. With EB-TDTP, an extended reference block is first
spatially decorrelated via DCT. Temporal prediction filters
are then applied for the extended transform blocks. This is
followed by inverse-DCT and interpolation to obtain the pre-
diction signal. The optimal EB-TDTP filters were shown to be
least square estimates [16], which enhances the performance
beyond that offered by the standard correlation coefficient
formulation.

Video signals exhibit significant variations in local statistics.
This requires the coder to adapt to local statistics, and an
effective approach involves a set of trained prediction modes
for the encoder to choose from. The EB-TDTP filter is a
high-dimensional vector and the problem at hand effectively
corresponds to vector quantizer design, a notorious non-convex
optimization problem. Here too, standard closed-loop design
suffers from significant instability issues. We thus propose a
DA-ACL framework to learn prediction filters to address these
challenges. Note that an initial framework for predictor design
for simple 1D predictive coders, and design of “plain” TDTP
filters restricted to fixed block size, appeared in our prelimi-
nary conference publications [17] and [18], respectively. This
paper subsumes the early work and complements it with the
following contributions: i) It extends the DA-ACL design to
account for EB-TDTP filters ii) It allows for variable block
size, an important feature in HEVC that was disabled in our
previous works and iii) Extended derivation of DA-ACL in
conjunction with least-squares estimation which opens the
door to general applicability of the method to a broader class
of problems.

The rest of the paper is organized as follows. In Section II,
we formulate the problem for a simple predictive compression
system along with some relevant background. Section III intro-
duces the DA-ACL paradigm for predictor design. Applica-
tions to video coding with EB-TDTP filter design is discussed
in Section IV. Experimental results are provided in Section V
followed by conclusions in Section VI.
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Fig. 1. Predictive compression system.

II. BACKGROUND

A. Linear Prediction

Fig. 1 shows a predictive compression system. Let xn , 0 ≤
n ≤ N be the input samples. The signal is modelled as a
first-order auto-regressive process. The current sample xn is
predicted from the previous reconstructed sample x̂n−1 as,

x̃n = αx̂n−1 (1)

The resulting prediction error, xn − x̃n , is quantized and sent
to the decoder. The predictor is designed to minimize the sum
of squared prediction errors given by

E =
N∑

n=1

(xn − αx̂n−1)
2 (2)

The optimal predictor, obtained by basic linear estimation
derivation, is

α =
∑

n xn x̂n−1∑
n x̂2

n−1

(3)

In order to adapt the predictor to variations in signal statistics,
let the input be partitioned into groups or blocks of samples
{g}. Let Ng be the set of samples belonging to a particular
block g. The encoder is given a choice of K prediction filters
{αk, k = 1, 2, . . . , K }. The encoder chooses the best prediction
mode for each block of samples. Let the best prediction mode
for a given block g be α̂g ∈ {αk}. The problem at hand is to
design the prediction filters {αk} such that the overall sum of
squared prediction error

E ′ =
∑

g

∑

n∈Ng

(xn − α̂g x̂n−1)
2, (4)

is minimized.
The piecewise constant nature of the cost function, with

respect to the encoder’s mode decisions, renders standard
convex optimization algorithms inapplicable to the current
scenario. A common, suboptimal remedy is the “K-modes”
predictor design which we discuss next.

B. Iterative K-Mode Predictor Design

Let us assume for the moment that we have a set of
reconstructed samples x̂n at the encoder. Given these recon-
structions, we can design prediction modes in a way similar to
“K-means” clustering. With an initialization of the prediction
modes, the following steps are performed iteratively:

Fig. 2. Closed-loop design.

• Mode assignment: For a given block g, assign the best
mode from the set of prediction modes which minimizes
the squared prediction error for the block.

• Prediction modes update: Let Nk be the union of samples
from blocks that share the same prediction mode. Similar
to (3), the optimal prediction mode αk for this cluster is
given by,

αk =
∑

n∈Nk
xn x̂n−1

∑
n x̂2

n−1

(5)

Such “K-modes” predictor design optimizes the predictors
for a given fixed set of reconstructions. However, in practice,
these reconstructions will themselves depend on the predictors
in use. This necessitates a two-fold optimization strategy,
wherein, reconstructions and predictors are optimized itera-
tively. Given an updated set of prediction modes, there are
several optional ways to update the reconstructions, leading to
the following design paradigms.

C. Open-Loop, Closed-Loop, and Asymptotic Closed-Loop
Design

Various techniques have been proposed in the context of
joint design of predictors and quantizers. Since in most of
modern video codecs the quantizer is fixed (up to scaling), our
focus here is on predictor design given fixed quantizers, while
noting that the same principles are also applicable to other
predictive coder modules such as quantizers. In open-loop
predictor design (see e.g., [5]), the predictor is designed using
original samples, which do not depend on the predictors and
the design is inherently stable. However, since the predictor
must ultimately be applied to reconstructed samples, to avoid
decoder drift, it will in fact operate on statistics mismatched
with the design phase. In closed-loop design, predictors are
designed iteratively. Let α̂i

g be the predictor for block g in
iteration i . The reconstructed samples for the corresponding
block in iteration i + 1 is updated as,

x̂ i+1
n = α̂i

g x̂ i+1
n−1 + êi+1

n (6)

where êi+1
n is the quantized prediction error en = xn −α̂i

g x̂ i+1
n−1.

Predictor α̂i
g was designed for reconstruction in iteration i :

{x̂ i
n}. However, it is applied to the reconstructed samples

of iteration i + 1: {x̂ i+1
n }. This mismatch results in design

instability, which is exacerbated due to feedback through the
prediction loop, and often proves catastrophic at low rates.
To tackle this issue, ACL was proposed in [7]. ACL enjoys
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Fig. 3. Asymptotic closed-loop design.

the best of both worlds. At each iteration, the samples are
predicted and reconstructed in open loop fashion as,

x̂ i+1
n = α̂i

g x̂ i
n−1 + êi+1

n (7)

where êi+1
n is the quantized prediction error ei+1

n = xn −
α̂i

g x̂ i
n−1. The predictor α̂i

g is used with reconstructed samples

x̂ i
n , the same set of samples that it was designed for, thereby

eliminating statistical mismatch and the resulting design insta-
bility. The new set of reconstructed samples are then used
to design prediction modes αi+1

k . Upon convergence, the
reconstructed samples remain the same over iterations. Thus,
predicting from x̂ i

n is same as predicting from x̂ i+1
n , which

is essentially closed-loop operation. The predictors designed
are thus optimal for closed-loop operation. Fig. 2 depicts
closed-loop design and Fig. 3 illustrates ACL design. Note
that the prediction loop of CL is open in ACL which disallows
propagation through the loop and hence avoids change in
statistics.

With this background, we next introduce the proposed
paradigm for predictor modes design.

III. DETERMINISTIC ANNEALING-BASED PREDICTOR

DESIGN

The hard prediction mode assignment to every signal block
makes it difficult to optimize the system with respect to
the prediction modes, as the derivatives with respect to
mode decisions vanish almost everywhere. Hence an itera-
tive K-mode design, a variant of “K-means” clustering was
proposed in [19]. However, this only ensures convergence to
a local minimum and renders the system highly sensitive to
initialization. A related problem is encountered in quantizer
design, where the piecewise constant nature of the quantizer
makes it a challenging optimization problem. In order to
jointly overcome the fundamental challenges of non-convexity
and design instability, we propose to embed the ACL based
minimization of the overall prediction error within the DA
framework. The proposed approach is inspired by, and builds
on the deterministic annealing (DA) framework of [8]. DA is
motivated by the intuition gained from annealing process in
physical chemistry, where certain systems are driven to their
low energy states by gradual cooling of the system. Analo-
gously, we introduce controlled randomness in the prediction

mode assignment for the blocks, but deterministically mini-
mize the overall prediction error, thereby avoiding many poor
local minima. The inherent probabilistic nature of DA allows
us to deterministically optimize the effective cost function,
an appropriate expectation function that efficiently accounts
for and replaces the stochastic wandering on the cost surface of
the classical method of simulated annealing [20]. The amount
of randomness is measured by the Shannon entropy and is
essentially controlled by the “temperature” of the system. The
prediction mode assignment is no longer piecewise constant,
and is differentiable everywhere, thus paving the way to
effective optimization of prediction modes.

A. Prediction Mode Derivation

We consider a random setting wherein for each block,
a prediction mode is chosen in probability. Thus, the mean
squared prediction error to minimize in ACL iteration i is
taken as the expectation,

J =
∑

g

∑

k

∑

n∈Ng

Pg Pi
k|g(xn − αi

k x̂ i
n−1)

2 (8)

where Pg is the probability assigned to input data block g
which is assumed to be uniform over all signal blocks. Asso-
ciation probability Pi

k|g is the probability that prediction mode
αk is selected for input block g. The degree of randomness in
the system is naturally measured by the Shannon entropy:

H = −
∑

g

∑

k

Pi
gk log(Pi

gk), (9)

where Pi
gk = Pg Pi

k|g is the joint probability distribution over
prediction modes and training data blocks. The optimization
problem is naturally restated as the minimization of the
Lagrangian cost function, directly analogous to the Helmholtz
free energy of statistical physics:

L = J − T H, (10)

where Lagrange parameter T controls the randomness of the
solution. As an aside, there is an alternative (equivalent) way
of formulating the problem, which is to maximize the Shannon
entropy under a constraint of a given level of expected
distortion, i.e, to maximize the Lagrangian given by,

L′ = H − β J (11)

The motivation to maximize entropy stems from Jaynes’s
celebrated maximum entropy principle [21] which states that
of all the probability distributions that satisfy a given set
of constraints, it is beneficial to choose the one that maxi-
mizes the entropy, thereby avoiding the implicit imposition of
any restrictive assumptions. It is obvious that the solution
that minimizes the Lagrangian in (10) also maximizes the
Lagrangian in (11).

Returning to the formulation of (10), note that the degree of
randomness is controlled by Lagrangian parameter T , which
corresponds to temperature in the physical analogy. As we
lower T , we trade entropy for prediction error. At the limit
of zero randomness, we in fact directly minimize the overall
prediction error.
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A notable benefit of randomization is that the expected
distortion is now differentiable with respect to the mode
decisions (now association probabilities rather than binary
decisions). Minimizing the Lagrangian cost with respect to
the association probabilities Pi

k|g , while additionally imposing
the obvious constraint

∑
k Pi

k|g = 1 (legitimate probabilities),
yields the Gibbs distribution:

Pi
k|g = e

−∑
n∈Ng (xn−αi

k x̂ i
n−1)2

T

∑
j e

−∑
n∈Ng (xn−αi

j x̂ i
n−1)2

T

(12)

Note that at high temperatures, we in fact maximize the system
entropy and the association probabilities are indeed uniform.

The optimal prediction modes satisfy,

∂ J

∂αi
k

=
∑

g

∑

n∈Ng

2Pg Pi
k|g(xn − αi

k x̂ i
n−1)(−x̂ i

n−1)

= 0 (13)

Thus, the optimal prediction modes are given by,

αi
k =

∑
g
∑

n∈Ng
Pi

k|g xn x̂ i
n−1∑

g
∑

n∈Ng
Pi

k|g(x̂ i
n−1)

2
(14)

At this point, it is instructive to pause and compare the
solution from DA (14) to the prediction modes in standard
K-modes design (5). As we see in (5), the cross correlations
and auto-correlations are taken as expectations over samples
classified to a particular mode. However, in (14), the expec-
tations are taken, with respect to the association probabilities,
over the entire training set. Thus, in standard K-modes design
in (5), the samples have highly localized influence, as they
only impact the “nearest mode”, thus blinding the system to
possible better solutions further away. In other words, it is
easy to get trapped in poor local optima. In contrast, in a DA
based solution, each sample influences all the prediction modes
through their association probabilities and the degree of influ-
ence varies with temperature. Specifically, at high temperature,
all the association probabilities are uniform. Thus, the optimal
prediction modes converge to and coincide at the correlation
coefficient of the entire training set, the globally optimal single
prediction mode. As the temperature is lowered, the degree
of influence decreases and at the limit of zero temperature,
the design is similar to the standard K-modes design. From
this viewpoint, the standard K-modes design is a hard, zero-
temperature design.

B. Overall Design

The design starts with a closed-loop initialization of the
reconstructions and at a high temperature T0. As observed
earlier, at high temperatures, given the uniform association
probabilities, all the prediction modes coincide at the optimal
single prediction mode of (3), regardless of initialization.
Thus, DA is effectively independent of initialization. As the
temperature is lowered, the association probabilities become
more “discriminating” and the solution less random. As the
system is cooled it reaches certain temperatures called “crit-
ical temperatures”, where the existing solution with its set

Algorithm 1 Proposed DA-ACL Predictor Design

of prediction modes is no longer stable. Thus, with slight
perturbations, the number of distinct modes increases as new
prediction modes emerge through cluster splits. This phe-
nomenon corresponds to “phase transitions” in the physical
analogy.

At each temperature, the design iterates between predictor
design and reconstruction update. For a given set of recon-
struction statistics, the predictor design iterates between:

• a) Computing association probabilities for the prediction
modes (12)

• b) Updating prediction modes (14)
These monotonically non-increasing steps minimize the

Lagrangian L. Upon convergence, the reconstructed samples
x̂ i+1

n in a block g are updated in ACL fashion as,

x̂ i+1
n =

∑

k

Pi
k|g(αi

k x̂ i
n−1 + êi+1

n,k ) (15)

where, êi+1
n,k is the quantized prediction error. Open-loop

update ensures better reconstructions. Thus, ACL iterations are
also monotonically non-increasing, ensuring the convergence
of reconstructions. Upon convergence in reconstructions, the
system is cooled and the process is repeated. Once the cooling
is complete, the system gives prediction modes that minimize
the overall prediction error (4) and that are optimal for closed-
loop operation. The overall design procedure is summarized
in Algorithm 1.

Having introduced a general framework for predictor design,
we next consider an important application in the context of
video coding.

IV. PREDICTOR DESIGN IN VIDEO CODING

Motion compensated prediction is a central component in
modern video coders, tasked with removing temporal redun-
dancies, which is critical to the overall compression efficiency
of the coder. The best matching block from the reference
frame is used as the prediction for the current block. Simple
pixel copying, however, largely ignores the spatial correla-
tions between pixels, and renders the prediction suboptimal.
Moreover, pixel copying implicitly assumes that the temporal
correlation coefficient is one at all frequencies. The invalidity
of this implicit assumption is illustrated by the temporal
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TABLE I

TEMPORAL CORRELATION COEFFICIENTS, ALONG MOTION TRAJECTORY,
OF DCT COEFFICIENTS IN THE BLOCK

correlation coefficients evaluated for various DCT coefficients
in Table I, over a sample sequence. Note how the correlation
varies with frequency. Thus, to completely disentangle spatial
and temporal correlations and to exploit the true frequency
dependent nature of temporal correlations, transform domain
temporal prediction (TDTP) was proposed in [14] which we
briefly discuss next.

A. Transform Domain Temporal Prediction

TDTP models the temporal evolution of each transform
coefficient as a first order AR process. In other words, we have
parallel, uncorrelated AR processes, one per frequency (trans-
form coefficient). Let xn be a particular transform (say, DCT)
coefficient in a given block in frame n, along a motion
trajectory. The evolution of xn is thus modeled as,

xn = αx̂n−1 + en (16)

where x̂n−1 is the corresponding DCT coefficient of the block
in reconstructed frame n − 1, along the motion trajectory,
and en is the innovation sequence. The optimal prediction
coefficient that minimizes the mean square prediction error
is given by (3). By performing temporal prediction in the
transform domain, TDTP effectively achieves both temporal
and spatial decorrelation. Further, TDTP captures the variation
of temporal correlation with spatial frequency, by optimizing
the predictor for each transform coefficient.

We observe that if one were to use the entries of Table I
as predictor coefficients, the effect would be coincidentally
similar to that of a low-pass filter. Video coders use sub-
pixel motion compensation which employs low-pass filters
for interpolation. These interpolation filters interfere with
TDTP, and may compromise its performance. Thus, to com-
pletely disentangle the effects of interpolation filters and
TDTP filters, extended-block transform domain temporal
prediction (EB-TDTP) was proposed in [16] which we briefly
discuss next,

B. Transform Domain Temporal Prediction With Extended
Blocks

Video coders employ sub-pixel motion compensation in
which interpolated reference blocks are used as prediction
signals. To obtain the interpolated signal, the coder makes
use of boundary samples outside the reference block. Thus,
applying TDTP on the interpolated signal is effectively consid-
ering spatial and temporal decorrelations in the subspace of the

interpolated signal, in contrast with decorrelating in the actual
space of the boundary-extended reference block. Moreover,
as observed earlier, interpolation filters interfere with TDTP
filters. EB-TDTP effectively addresses these challenges by first
scaling the extended block pixels according to the temporal
prediction coefficients in the transform domain, and then
applying the interpolation filters. To formulate mathematically,
let Yn,b be the block b of dimensions B1 × B1 in frame n,
which is to be predicted. Let Ŷ mv

n−1,b be the reference block
in frame n − 1, of dimensions B2 × B2(B2 > B1), to which
the video coder applies interpolation to obtain the prediction
signal. Let the vertical and horizontal interpolation filters be
denoted as Iv and Ih , which are matrices of sizes B1 × B2 and
B2 × B1, respectively. Thus the interpolated prediction signal
of standard coders is,

Ỹ = Iv Ŷ mv
n−1,b Ih (17)

and the prediction signal from “plain” (i.e., without “extended
block”) TDTP is,

ỸT DT P = D′
B1

[{DB1(Iv Ŷ mv
n−1,b Ih)D′

B1
} ◦ FB1]DB1 (18)

where DB1 is the DCT matrix, FB1 is the TDTP filter and ◦
denotes component-wise matrix multiplication.

In EB-TDTP, we first spatially decorrelate the extended
block Ŷ mv

n−1,b by a separable DCT. Then, the extended block
TDTP filter FB2 is applied to the transformed extended block.
This is followed by inverse transform and interpolation to
derive the prediction signal. Thus, EB-TDTP of Yn,b, as illus-
trated in Fig. 4 can be formulated as,

ỸE B−T DT P = Iv D′
B2

{{DB2 Ŷ mv
n−1,b D′

B2
} ◦ FB2}DB2 Ih (19)

To derive the predictor FB2 , let K1 = Iv D′
B2

, K2 = DB2 Ih ,

and X̂mv
n−1,b = DB2 Ŷ mv

n−1,b D′
B2

. The prediction error can thus
be written as,

EE B−T DT P =
∑

n

∑

b

∥∥∥Yn,b − Ỹn,b

∥∥∥
2

=
∑

n

∑

b

∥∥∥Yn,b − K1(X̂mv
n−1,b ◦ FB2)K2

∥∥∥
2

=
∑

n

∑

b

[
B1∑

r=1

B1∑

s=1

{Yn,b(r, s) −
B2∑

i=1

B2∑

j=1

FB2(i, j)

×X̂mv
n−1,b(i, j)K1(r, i)K2( j, s)}2] (20)

This is essentially a least-squares estimation problem of
minimizing,

EE B−T DT P =
∑

n

∑

b

∥∥An,bfB2
− tn,b

∥∥2
, (21)

where f B2
is a vector representation (containing all elements)

of matrix FB2 . An,b and tn,b are derived as,

An,b(u, v) = X̂mv
n−1,b(i, j)K1(r, i)K2( j, s) (22)

tn,b(u) = Yn,b(r, s) (23)

where, u = r B1 + s and v = i B2 + j . The optimal predictor
is given by,

f B2
= (

∑

n

∑

b

AT
n,b An,b)

−1(
∑

n

∑

b

AT
n,btn,b) (24)
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Fig. 4. Illustration of extended block transform domain temporal prediction.

As seen from (24), the optimal predictor computation is
essentially posed as a classic least-squares problem. The
discussion so far involved a single predictor. To realize the full
potential of EB-TDTP, we need a set of EB-TDTP filters to
achieve adaptivity, which implies the design of an efficient set
of prediction modes. We note that multiple prediction modes
introduce optimization in a higher dimensional parameter
space, making the design more prone to be trapped in local
poor minima. Thus, there is strong motivation to pursue a DA
based solution.

V. DETERMINISTIC ANNEALING-BASED

EB-TDTP MODE DESIGN

Video signals vary significantly in their statistics result-
ing in wide variations in the temporal correlations of
the transform coefficients. This motivates for an adaptive
EB-TDTP framework to realize its full potential. The design
of EB-TDTP modes involves a large set of parameters to
be optimized, causing severe statistical mismatch in closed-
loop design, and often leading to catastrophic instabilities.
Moreover, ACL based design was observed to be very sen-
sitive to initialization, reflective of the severe non-convexity
of the problem. To address these challenges, we propose a
DA-ACL based solution to the problem of EB-TDTP modes
design.

A. Problem Formulation

Let us consider an input training set which is partitioned
into segments, each of which is called a group of pictures
(GOP). Let the set of frames in a GOP be denoted by Ng .
To get a crisp understanding of the design, we first introduce
the design in fixed block setting and then extend it to variable
block size setting. At the GOP level, the encoder switches
between EB-TDTP modes {Fk}, where each Fk is specified
by a matrix of prediction coefficients, of size B2 × B2. (Note
that the mode subscript B2 has now been discarded to simplify
notation). Let the prediction mode chosen for a GOP g be F̂g .
The cost function, which is the overall prediction error to be
minimized, is given by

E ′
E B−T DT P =

∑

g

∑

n∈g

∑

b

∥∥∥Yg,n,b − Ỹg,n,b

∥∥∥
2

=
∑

g

∑

n∈g

∑

b

∥∥∥Yg,n,b − K1(X̂mv
n−1,b ◦ F̂g)K2

∥∥∥
2

The cost function can be equivalently written as

E ′
E B−T DT P =

∑

g

∑

n∈g

∑

b

∥∥∥Ag,n,b f̂g − tn,b

∥∥∥
2

(25)

where f̂g is the vector representation of matrix Fk and the
definitions of Ag,n,b and tg,n,b are straightforward extensions
of (22) and (23).

B. EB-TDTP Mode Derivation

The design involves randomization of the prediction mode
assignment to GOPs. At a given temperature T and ACL iter-
ation i , let conditional probability Pi

k|g denote the probability
of assigning EB-TDTP mode Fi

k to GOP g. The prediction
error to be minimized is given by the expectation:
JE B−T DT P =

∑

g

∑

k

∑

n∈g

∑

b

Pg Pi
k|g

∥∥∥Ai
g,n,bf i

k − tn,b

∥∥∥
2

(26)

where Pg denotes the probability of the input GOPs (assumed
uniform). The degree of randomness is measured by the
Shannon entropy,

HE B−T DT P = −
∑

g

∑

k

Pi
gk log(Pi

gk), (27)

where Pi
gk = Pg Pi

k|g is the joint distribution over EB-TDTP
modes and input GOPs. The cost function to be minimized is
the Lagrangian,

LE B−T DT P = JE B−T DT P − T HE B−T DT P (28)

The problem at hand is posed as the minimization of the
entropy-constrained Lagrangian LE B−T DT P . The association
probabilities that minimize the Lagrangian cost subject to the
standard normalization constraint (adding up to 1), are given
by:

Pi
k|g = e−

∑
n∈g

∑
b

∥∥∥Ai
g,n,b f i

k −tn,b

∥∥∥
2

T

∑
j e−

∑
n∈g

∑
b

∥∥∥Ai
g,n,b f i

j −tn,b

∥∥∥
2

T

(29)

Minimizing the expected distortion with respect to the
prediction modes yields,

∂ J

∂f i
k

=
∑

g

∑

n∈g

∑

b

Pi
k|g((Ai

g,n,b)
T Ai

g,n,bfk − (Ai
g,n,b)

T tn,b)

= 0 (30)

Thus, the optimal prediction modes are given by,

f i
k = {

∑

g

∑

n∈g

∑

b

Pi
k|g((Ai

g,n,b)
T Ai

g,n,b)}−1

×{
∑

g

∑

n∈g

∑

b

Pi
k|g((Ai

g,n,b)
T tn,b)} (31)

C. Mode Design Extension to Variable Block Size Coding

Variable block size coding is an important feature of state-
of-the-art codecs, which enables better adaptation to local
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Fig. 5. Flow chart of the proposed DA-ACL EB-TDTP design algorithm.

signal statistics and provides considerable gains over fixed
block size coding. So far, we covered prediction modes design
for the simpler setting where the block size is fixed. This
section extends the design to handle variable block sizes,
which enables its incorporation within the latest codecs.

Let us index the available block sizes by s. To extend
the framework to the variable block size setting, we define
an EB-TDTP mode Fk as consisting of a set of EB-TDTP
filters {Fk,s }, where Fk,s is the EB-TDTP filter for block
size s within mode Fk . Thus, a minimal side information
specifying to the decoder the choice of EB-TDTP mode for
a given GOP, completely specifies the prediction filters used
for all block sizes. At design iteration i , using the convenient
vector representation f i

k,s for prediction filter Fk,s , the expected
prediction error of (26) is now correspondingly expanded to

a variable block setting (and denoted E B − T DT P − V B):

JE B−T DT P−V B =
∑

g

∑

k

∑

n∈g

∑

s

∑

b∈s

Pg

×Pi
k|g

∥∥∥Ai
g,n,bf i

k,s − tn,b

∥∥∥
2

(32)

To obtain the Lagrangian we add the entropic constraint
(27), and the free energy Lagrangian, L = J − T H , becomes:

LE B−T DT P−V B = JE B−T DT P−V B − T HE B−T DT P (33)

The association probabilities in this setting are given by

Pi
k|g = e−

∑
n∈g

∑
s

∑
b∈s

∥∥∥Ai
g,n,b f i

k,s −tn,b

∥∥∥
2

T

∑
j e−

∑
n∈g

∑
b

∥∥∥Ai
g,n,b f i

j,s−tn,b

∥∥∥
2

T

(34)

and the optimal prediction filter for block size s in mode k is,
in vector representation:
f i
k,s = {

∑

g

∑

n∈g

∑

b∈s

Pi
k|g((Ai

g,n,b)
T Ai

g,n,b)}−1

×{
∑

g

∑

n∈g

∑

b∈s

Pi
k|g((Ai

g,n,b)
T tn,b)} (35)

D. Overall Design

The overall design is illustrated in Fig. 5, where the design
starts from a high temperature and is gradually cooled. At high
temperatures, the association probabilities are uniform as is
obvious from (34) and all the EB-TDTP modes given by (35)
are coincidental. At a given temperature T , the design iterates
between optimizing predictors and updating reconstructions in
ACL way. Optimizing predictors for a given reconstruction set
involves computing association probabilities as (34) and updat-
ing prediction modes according to (35). Upon convergence, the
reconstructed samples in GOP g are updated in ACL fashion.
With video codecs, we also need to account for various
encoder decisions like motion vectors, block partitions etc.,
to ensure convergence. Thus, during reconstruction update, the
encoder is allowed to update its decisions, ensuring optimal
decisions for the new reconstructions. We use these decisions
to generate prediction residual statistics for the next ACL
iteration. Upon convergence in reconstructions, the system
is cooled and the process is repeated. As the temperature
is lowered, the system becomes more deterministic with the
emergence of more EB-TDTP modes through a sequence
of phase transitions. At the limit of zero temperature, the
prediction modes directly minimize the squared distortion and
with the convergence in the reconstructions, the prediction
modes designed are optimal for the closed-loop operation.
Note that our earlier work in [18] with ‘plain’ TDTP with
fixed block size is a special case of the current approach
with a single block size s and the extended block size
B2 = B1. While the proposed solution was presented in
conjunction with video coding, we note in passing that the
method is generally applicable to a rich class of prob-
lems involving least-square estimation and non-stationary data
(see, e.g, [22], [23]).
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Fig. 6. First-order scalar predictive coding. Reconstructed SNR vs. average
bits per sample for the test set of speech files.

VI. EXPERIMENTAL RESULTS

A. A Simple First Order Predictive Encoder

The first experiment considers the simple setting of scalar,
first order predictive coding. We chose speech signals as a real-
world source data. A set of six speech files from the EBU
SQAM database were chosen for simulations [24]. Half of
the speech files were used as the training set for designing
prediction modes and the remaining half as the test set. A set
of six prediction modes were designed. A fixed dead-zone
quantizer was employed for quantization. Different R-D points
were obtained by varying Lagrange multiplier of entropy
constrained quantization. The 3 competitors were: closed-loop
(CL), “plain ACL”, and the proposed method (DA-ACL).
While DA-ACL is independent of initialization, CL and ACL
designs were repeated with multiple initializations and the best
results were selected. Fig. 6 shows the reconstructed SNR
versus bit rate. It is evident from the results that the proposed
DA-ACL method gives significant 0.4dB and 5dB gains over
competitors ACL and CL, respectively.

B. Video Coding Results

The proposed method was implemented in HM 14.0.
We chose low-delay P, or LDP profile (section 9.2.3 in [25])
for our experiments. In all experiments, the encoder only
uses the previous frame as reference. Choosing uni-directional
prediction and disabling multiple reference frames gives a
“clean” comparison of design methods without being muddled
by complexities in bi-directional prediction or multiple refer-
ence frames. We emphasize, that the approach is nonetheless
applicable to less restricted settings. The anchor is the HEVC
codec which performs conventional pixel domain prediction,
i.e, performs simple pixel copying from a possibly interpolated
block in the reference frame. The competing codecs use
EB-TDTP prediction modes.

As mentioned in Section V-C, the EB-TDTP mode is
a collection of EB-TDTP filters covering all block sizes.
The EB-TDTP filters are employed as depicted in Fig. 4.
Specifying an EB-TDTP mode for a GOP, at minimal side
information cost, completely specifies the prediction filters
for all block sizes. To minimize the encoding complexity,

TABLE II

THE TRAINING SET OF VIDEO SEQUENCES

TABLE III

PERFORMANCE OVER THE TEST SET: BIT-RATE SAVINGS OVER HEVC
(IN %) FOR THE Y COMPONENT

EB-TDTP filters are used only during motion compensated
prediction but not during motion estimation. In other words,
conventional motion search is performed in the pixel domain
to determine the motion vector, and only then we perform
transform domain prediction with EB-TDTP filters. The sim-
ulations are performed at QP values of 22, 27, 32 and 37,
as recommended in the HEVC Common Test Conditions
(CTC). The implementation details for training EB-TDTP
modes are discussed next.

1) Training EB-TDTP Modes: EB-TDTP filters depend on
reconstruction statistics which vary with QP value. Thus,
EB-TDTP modes are trained conditioned on the QP value.
For each QP value, we design four EB-TDTP modes by each
of the following design methods:

i) Standard closed-loop design, denoted CL: predictors
are optimized by the ‘K-modes’ clustering method and the
reconstruction is updated in the standard closed-loop fashion.
This is the traditional approach to predictor design and suffers
from both convergence to poor local minima due to the greedy
‘K-modes’ style design of predictors, and design instability
due to closed-loop update of the reconstructed signal.

ii) K-mode design with “plain ACL”, denoted ACL: predic-
tors are still optimized by the ‘K-modes’ clustering method,
but the reconstruction is updated using ACL. This design

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on February 01,2022 at 07:29:48 UTC from IEEE Xplore.  Restrictions apply. 



VISHWANATH et al.: EFFECTIVE PREDICTION MODES DESIGN FOR ADAPTIVE COMPRESSION 645

Fig. 7. RD curves for: (a) Coastguard, (b) Kimono, (c) Soccer, and (d) BasketballDrive sequences.

enjoys stability due to ACL but still suffers from poor local
minima of the cost.

iii) The proposed method, denoted DA-ACL: predictors are
optimized by DA and the reconstructions are updated in ACL
fashion. This solves both the sensitivity to initialization and
the design instability issues.

The aforementioned methods perform iterative optimization
of predictors and reconstruction. Given a set of predictors,
the reconstruction is updated by the HEVC codec. During
reconstruction update, reconstruction statistics for different
block sizes are collected for predictor optimization in the
next design iteration. The predictor optimization is done in
a separate module which is external to the codec. The training
set sequences are listed in Table II. Note that, to avoid
unintended bias, the data set was randomly partitioned into
training and test sets.

2) Testing: The trained prediction modes are stored at both
encoder and decoder. The encoder performs a brute-force
search over all prediction modes for each GOP and selects the
best mode. The average bit-rate reduction by using EB-TBTP
modes over HEVC that performs conventional pixel domain
prediction is calculated as per [26]. The bit-rate savings on the
test set, due to the EB-TDTP modes designed by CL, ACL
and DA-ACL, are tabulated in Table III. Rate-distortion (RD)
curves for some example test sequences are shown in Fig. 7.
It is important to note that the figures show only 3 RD points

TABLE IV

RESIDUAL ENERGY PER TRANSFORM COEFFICIENT WITH HEVC
PREDICTION FOR Coastguard TEST SEQUENCE AT QP=32

corresponding to QP values 27, 32 and 37. This is only to
maintain a rate scale that allows for better visualization of the
distinction between methods. The gains are in fact larger for
the missing RD point (QP=22) that falls outside the figure.
The significant bit-rate reduction over the test set provides
clear evidence for the utility of proposed approach. Note that
the gain increase with bit-rate may be explained by the fact
that at lower rates, many transform coefficients are quantized
to zero, thus reducing the scope for gains due to optimal
predictors for these coefficients.

While the most practically relevant measure is the overall
coding gains, which was therefore the central focus of the
experiments, it is interesting to also measure how the improved
prediction performed in terms of its own direct performance
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TABLE V

ENERGY PER TRANSFORM COEFFICIENT WITH EB-TDTP PREDICTION
FOR Coastguard TEST SEQUENCE AT QP=32

TABLE VI

PERCENTAGE REDUCTION IN VARIANCE OF TRANSFORM COEFFICIENTS

FOR Coastguard TEST SEQUENCE AT QP=32

criterion, namely, in terms of the observed prediction error.
(The mean squared prediction error is the energy of the resid-
ual prior to quantization in the codec). To illustrate this through
a small experiment, we measured the prediction gain achieved
on the coastguard sequence at QP=32, corresponding to the
middle RD point in the Fig. 7(a), and observed a significant
0.84dB improvement over standard HEVC prediction. To fur-
ther illustrate the direct impact of EB-TDTP prediction in
minimizing residual energy in transform domain, we present
the energy of the residual transform coefficients (for block size
8×8 in coastguard sequence at QP=32) with HEVC prediction
and EB-TDTP prediction in Tables IV and V respectively.
For ease of comparison, the percentage reduction in residual
energy for each transform coefficient is presented in Table VI.
As mentioned earlier, the proposed transform domain predic-
tion captures the variations in temporal correlations across
frequencies and provides enhanced prediction gains which
grow with increase in frequency. For clear illustration, let us
focus specifically on the prediction gains along the diagonal
(i.e., for DCT coefficients at positions (i, i), i = 0, . . . , 7).
The prediction gain, G P , and its corresponding expression in
dB, SNRP [d B], are traditionally defined as [27]

G P = σ 2

σ 2
e

, SNRP [d B] = 10 log G P ,

where σ 2 denotes the coefficient’s variance, and σ 2
e is its

prediction error variance. The increase in dB of the prediction
gain, denoted �SNRP , provided by EB-TDTP over standard
HEVC prediction, is depicted in Fig. 8 for coefficients (i, i)
along the diagonal of 8×8 blocks in the coastguard sequence,
at QP=32. Note how EB-TDTP offers enhanced prediction,
wherein the additional prediction gains grow from 0 to 4 dB
with increasing frequency.

As regards complexity, if one considers a direct implemen-
tation, then employing transform domain prediction with a

Fig. 8. Increase in prediction gain (in dB) achieved by EB-TDTP over
standard HEVC prediction, measured over the diagonal (i, i) DCT coefficients
for coastguard test sequence at QP=32.

particular EB-TDTP mode increases the encoder complexity
by about a factor of two. Further, since the encoder does brute-
force search over four modes, the overall encoding complexity
is about 8x compared to the anchor. The decoder simply uses
the mode specified by the encoder and thus incurs complexity
increase of about 2x compared to the anchor decoder. It is clear
that various approaches can be explored for fast selection of
prediction modes and fast implementation of transform domain
prediction. The current paper focuses on demonstrating the
potential of the design method, and exploration of complexity
reduction techniques is beyond its scope.

VII. CONCLUSION

This paper presents a novel near-optimal procedure for
designing prediction modes for adaptive compression systems.
It effectively resolves significant shortcomings due to statis-
tical mismatch and design instability of standard approaches.
The deterministic annealing-based framework enables direct
optimization of the overall cost with respect to prediction
mode decisions, and avoids many poor local minima that
trap its competitors. Substantial gains in the experiments
demonstrate the efficacy of the proposed approach.
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