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ABSTRACT
Error Types Simulation (ETS)- a new method for per-

formance evaluation of convolutional codes, is presented.

The key idea is to consider types of channel error se-
quences separately and estimate the contribution of
each type to the information bit error rate (I-BER).
By averaging these contributions, weighted by the cor-
responding probability of occurrence of the type, we
obtain the I-BER curve. We show that this approach
yields an accurate estimate of the entire I-BER curve,
while maintaining a computational complexity that is
only a very small fraction of the complexity of a Monte-
Carlo simulation for a single channel condition. ETS is
shown to outperform competing methods, in terms of
both accuracy of the estimate, and the total computa-
tional complexity.

1. INTRODUCTION

Monte-Carlo simulation is often used for performance
evaluation of a convolutional code. In Monte-Carlo
simulation, we simulate the codec with the given chan-
nel conditions and obtain an estimate of the result-
ing [-BER. The simulation is stopped when sufficient
number of errors have been accumulated to estimate
the I-BER with the prescribed reliability. For exam-
ple, an accuracy of +20% about the mean with 95%
confidence, requires accumulation of over 100 decod-
ing errors (assuming a rate 1/n code). To get a rough
idea of the computational complexity of a typical sim-
ulation, consider evaluating the performance of a rate
1/2 convolutional code producing an I-BER of 10~°,
To accumulate 100 decoding errors, we need to simu-
late the encoding and decoding of approximately 108
bits. Moreover, one is often interested in the I-BER of
the code under a variety of channel conditions. This
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is especially true in the case of wireless communication
channels which are highly non-stationary and where
the channel bit error rate (C-BER) varies over a large
range. Thus, if we require to test the performance of
several competing codes under various channel condi-
tions, while meeting the stringent requirements on the
accuracy of the estimate, the simulation time can be
prohibitively long. This motivates the search for an
efficient, yet reliable, technique for evaluatmg the per-
formance of the Viterbi decoder.

This problem was addressed in the work of Herro
and Nowack [1] where the concept of importance sam-
pling was applied to speed up the simulations. The
basic idea was to increase the frequency of oceurrence
of the “important” events (viz. those that lead to de-
coding errors), and then appropriately weight the ob-
served simulation data in order to obtain I-BER. for the
true channel conditions. However, the computational
gains obtained by the technique are quite small, and
the method is suited only for codes with short con-
straint length. A different approach to apply impor-
tance sampling to Viterbi decoder simulation, called
error event simulation (EES), was introduced by Sad-
owsky [2]. This technique provides a significant reduc-
tion in complexity, especially for simulation of codes
with low I-BER. However, the estimate of I-BER is ob-
tained for a single C-BER, and not for an entire range
of C-BERs. Further, the technique does not produce

accurate I-BER estimates for moderately noisy to very
noisy channels.

In this paper we take as our starting point the early
work of Herro and Nowack, and develop the error types
simulation (ETS) method. We classify the channel er-
ror sequences according to their {ype, and consider only
those types that lead to decoding errors. The idea of
importance sampling is used to estimate the contribu-
tions of each type to the I-BER. We average these con-
tributions by weighting each term with the probability
of occurrence of the respective type at prescribed levels
of channel noise. We show that this approach results in
an efficient technique for generating the entire I-BER



curve with high accuracy.

2. VITERBI DECODING OF
CONVOLUTIONAL CODES

The encoder of a rate k/n convolutional code is a finite
state machine which takes in k information bits and
produces n channel bits per time unit. The output of
the encoder at any time unit depends on the k input
bits as well as the past L — k input bits. The state
diagram of this finite state machine can be expanded
in time to obtain a trellis diagram, for details see eg.,
[3]. The output bits are transmitted over a noisy chan-
nel. The decoder processes the output of the channel
and produces an estimate of the input information bits.
This estimate is obtained using the Viterbi algorithm
to search the trellis for the most likely transmitted se-
quence. In this paper we will assume that the Viterbi
decoder operates using a sliding window, i.e., the de-
coder makes its decision about the k information bits at
time ¢, by observing the channel output till time i+ M.
A value of M of ~ 5L/k is empirically known to yield
a near optimum decoding [4]. Clearly the decoding er-
rors at time ¢ will be affected by channel errors in at
most M future time units. As in [1] we further assume
that decoding errors at time 7 are affected by channel
errors in at most M past time units.

Consider a sequence of channel outputs, 2M + 1
time units long, consisting of N = n(2M + 1) channel
bits. We define the number of channel errors in this se-
quence, as the type of the sequence!. Clearly, there are
N +1 possible types of sequences of length N, including
the ‘all-0’ (error free) type. Let E(w) be the expected
bit error rate at time i, when we have type-w chan-
nel error sequence, in the time interval [{ — M, i+ M].
Hence the I-BER at time ¢, over a binary symmetric
channel with C-BER ¢ is :

N
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where, P.(w) is the probability of w channel bit er-
rors in a sequence of length N bits. Note that p; is
time-invariant and does not depend on ¢. The quantity
P.(w) can be evaluated for a binary symmetric channel
(BSC), as

P(w) = (1 — )N ™.

From (1) it is clear that to evaluate py we only need
to obtain an estimate of the quantities {E(w)}. It is

1Usually the type of a binary sequence is defined as the rel-
ative frequency of 1’s in the sequence, see eg. [5]. However in
the present context it is more convenient define types without
normalization
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for this purpose that we invoke importance sampling.
Observe that once the set of quantities {E(w)} has
been estimated, the evaluation of (1) for any value of
C-BER ¢, can be done with negligible computational
effort. Hence we can obtain the BER curve for an entire
range of channel conditions.

3. ESTIMATION OF E(W)

To estimate the quantity E(w), we use the Monte Carlo
simulation. Since the code is linear, without loss of
generality we can assume that an all zero sequence was
transmitted and decode the corresponding received se-
quence. However, for each value of w, we use a value of
¢ that will produce a channel error sequence of type w
with the highest probability. Hence, to estimate E(w),
we run the Monte-Carlo simulation with a ¢ = . For
each time unit ¢, we obtain the number of decoding
errors and also determine the type of channel error se-
quence in the time interval [i — M, i+ M]. The simu-
lation is stopped when we have accumulated sufficient
decoded bit errors for channel error sequences of type
w. Now, we adjust € to ¥, and estimate E(w + 1).
Note that when the simulation was being performed
at € = ¥, channel error sequences of type w + 1 (and
other types too) were also generated (along with the
corresponding irfformation bit errors). We use this data
in addition to the new data that will be generated at
€= "’—;,"—l The number of errors that we require to accu-
mulate depends on the accuracy and confidence interval
of the required estimates. If all the estimates of E(w)
are within 4:20% of the corresponding mean with 95%
confidence, we are assured that p; is accurate with at
least this precision.

4. THE CASE OF SMALL W

By simulating the channel with € tailored to the gen-
eration of channel error sequences of type w, we sig-
nificantly reduce the simulation time. Further gains in
computations are possible for sequences with weights
close to [dfree/2], where dj, . is the free distance of
the convolutional code. We note that for these types
of channel] error sequences, the decoding errors occur
only when the channel errors occur in a small interval
around the decoding time ¢. To see this consider decod-
ing errors caused by a channel error sequence of type
wo = [dfree /2], Let Lo be the maximum length of the
paths? with weight dj,.... Clearly, if any of the wo chan-
nel errors lie outside the interval [i—Lo+1, i4+Lo—1], we

2 A path is a sequence of channel output bits produced by the
encoder, when it leaves the all-zero state remerges with it for the
first time, see for eg. [3]



Table 1: The data used to estimate F(w) for types w = 4,5.
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W | Imez (2w) | E(w) E(w)
4 8 0.0032 105
5 15 0.0023 | 7.7+ 10°°

¢ | I'BER (BETS) | I-BER (EES) | I-BER (True)
0.02 | 4.0%10-° 39%10°° 12+10°°
0.04 | 0.12+10~2 | 0981073 | 0.12%10"2
0.05 | 0.38+10-2 | 0.27%10~2 | 0.36#10~2
0.083 | 0.41%10°7 | 0.20%10-% | 0411071

Table 2: Here we compare the performance of the ETS method with the EES and the true I-BER,

will not have any decoded bit errors at time ¢. Hence,
for these types the “important” events are the ones
where channel errors are localized in a small interval
around the time 1.

We suggest the following technique for estimating
E(w). Let lpur(2w) be the maximum length of paths
with weight < 2w. We generate channel error sequences
with exactly w errors and 20,4, (2w)—1 time units long.
We now decode these individual sequences with the de-
coder initialized in the all zero state and terminate the
decoder at the end of 2[4, (2w)—1 units in the all zero
state. The average decoded bit error rate in the time
unit Imqs(2w) can be estimated from these sequences,
we denote this estimate as E(w). It can be easily shown
that E(w) and E(w) are related as

w
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and

) N — 0 [2las (20) — 1]
Tg(w ) = ( w—w > .
Hence once the quantities { E(w)} have been estimated,
the estimate for E(w) can be obtained.
For values of w with /5,45 (2w) close to M, it is gen-
erally, more economic in terms of computation to use
the technique described in Section 3 to estimate E(w).

5. RESULTS

We demonstrate of the utility of the ETS method de-
scribed in this paper by evaluating the performance of

a rate 1/2 convolutional code with constraint length
L = 6 and dfree = 8, given in [6]. The length of the
sliding window used by the decoder is M = 30. We
define types of channel error sequences by looking at
the number of channel bit errors in sequences of length
61 time units (or 122 bits).

Consider obtaining the I-BER curve for values of
€ in the range 0.005 to 0.100. Since the free distance
of this code is 8, channel error sequences of types less
that 4 will not cause any decoding errors. Hence we
need to consider sequences of type w > 4. For types
4 and 5, the method described in Section 4 was used
to estimate E(w). E(w) was calculated using these
estimates in (2). The details are tabulated in Table 1.
For other values of w, E(w) was estimated using the
technique described in Section 3.

Using these estimates of E(w) in equation (1), we
obtain the I-BER curve shown in Figure 1. The value of
I-BER for some selected values of C-BER are given in
Table 2. Table 2 also gives the values of I-BER obtained
by the brute-force Monte Carlo simulation and those
obtained using the EES technique. It .can be seen that
our technique produces an estimate that is very close
to that produced by extensive Monte-Carlo simulation.
This is, however, not surprising, since our technique is
in principle equivalent to a brute-force simulation, but
is much more efficient. Table 2 also confirms the short-
comings of the EES technique as pointed out in [2],
namely, the estimates are biased at moderate to high
values of e.

As far as the computational complexity is concerned
we present the following analysis.
ETS v/s Monte-Carlo Simulation : Consider obtain-
ing estimates of BER with an accuracy of +20% about
the mean with 95% confidence. If we accumulate over
100 decoding errors for channel error sequences of each
type, we are assured of obtaining estimates that lie with
in the desired accuracy limits at all values of €. For this
ETS required simulation of about 3.7 + 10® bits. Com-



2037

Decoded Bit Error Rate

[ { { {
0 0.01 0.02 003 0.04

Il
005 006 007 0.08 0.09 0.1

Channel transition probability

Figure 1: This is the I-BER versus C-BER plot for a rate 1/2 convolutional code with constraint length L = 6, see

section 5 for details.

pare this with the amount of computation required by
the Monte-Carlo simulation to evaluate the code at say
€ = 0.005. Accumulation of 100 decoding errors would
require simulation of about 1.4 % 10° bits. Thus sim-
ulation of this single channel condition requires about
400 times the computation required by ETS to gener-
ate the entire I-BER curve.

ETS v/s EES : The EES technique was implemented
by simulating error events corresponding to paths of
weights 8 — 12. There were 76 such paths in this in-
terval. Simulating 1000 runs for each path with each
run requiring decoding of about 25 bits on an average,
required a simulation of about 1.9 * 105, Even if we
approximate the I-BER curve using, say, 20 points, the
computational savings of the ETS method over EES is
about 10 times. Thus we see that ETS outperforms the
EES method in terms of complexity while maintaining
the accuracy of the estimates at all channel error rates.

6. ~CONCLUSION AND DISCUSSIONS

In this paper we presented error type simulation (ETS)

- an efficient technique for performance evaluation of

convolutional codes. We showed that ETS outperforms
the known techniques for performance estimation of

convolutional codes in speed as well as in the accuracy
of the estimate.

Although the technique was described for the case
of hard decision decoding, it should be appreciated that
this technique easily generalizes to soft decision decod-
ing on an additive white Gaussian noise (AWGN) chan-
nel. For this case we define types of channel error se-
quences by considering the energy of AWGN in a chan-
nel output sequence of length 2M + 1 time units. Since
this energy is continuous valued, we consider a continu-
ous interval of energy values to define types. With this
modification the technique presented in this paper can
be used for the performance evaluation of both binary
convolutional codes and trellis modulation codes for an
AWGN channel. A paper describing these extensions
is under preparation.
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