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ABSTRACT

This paper considers near optimal design of predictive compression
system that accounts for packet loss over unreliable networks. Major
challenges to address include, propagation of errors due to packet
loss through the prediction loop, mismatch between statistics used
for design and during operation, and above all a cost function that
is fraught with poor local minima. Accurately estimating and mini-
mizing the end-to-end distortion (EED), in combination with asymp-
totic closed-loop (ACL) design that employs open-loop iterations,
but mimics closed-loop operation on convergence, was proposed to
address the first two challenges. However the severe non-convexity
of the cost function, especially due to the piece-wise linear nature
of the quantizer function, makes this a particularly challenging op-
timization problem. We propose to tackle this via a new design ap-
proach in the deterministic annealing framework to avoid poor local
minima, coupled with the ACL approach to minimize EED estimate.
This effectively addresses all the major challenges, and leads to a
near optimal design of error-resilient predictive compression sys-
tem. Substantial performance improvement obtained in experimen-
tal evaluations demonstrates the efficacy of the proposed approach.

Index Terms— Predictor design, annealing, error resilience,
asymptotic closed-loop

1. INTRODUCTION

Prediction is widely used in speech, audio and video coding to ex-
ploit spatial and temporal correlations [1]-[3]. These coders pre-
dict the current sample from previously reconstructed samples, then
quantize and transmit the prediction error. However, when such
compressed data is transmitted over unreliable networks, packet loss
in networks leads to error in reconstructed signal. This error fur-
ther propagates in the prediction loop and can lead to significant de-
terioration in the reconstructed signal. In spite of this, traditional
approaches do not account for the packet loss, and design predic-
tors and quantizers to simply minimize the distortion at the encoder.
Various error control and concealment approaches were proposed in
[4] and redundancy coding to improve robustness was proposed in
[5], [6]. However, in order to build robust systems that account for
channel loss, we need to optimize the end-to-end distortion (EED)
observed at the decoder. Optimal estimation of EED was proposed
in [7] and a predictor designed to minimize EED was proposed in
[8].

Still, joint design of the predictor and quantizer of a predictive
compression system is further challenging as the feedback loop
creates a complex relation between the two. Two simple design
approaches of, open-loop and closed-loop were introduced in [9]
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Fig. 1. Predictive compression system

and [10], respectively, which minimize the distortion at the encoder.
These approaches suffer from stability issues, especially at low
bit-rates, due to mismatch between statistics used for design and
statistics observed during operation. To address this, the asymptotic
closed-loop (ACL) design was proposed in [11]. ACL iteratively
updates the predictor and quantizer in open-loop to ensure stability
of statistics used during design and operation, but on convergence
mimics closed-loop operation, thus enjoying benefits of both open-
loop and closed-loop design. To account for packet loss, ACL based
design of predictive compression system to minimize EED estimate
was proposed in [12]. This approach addressed the challenges of
avoiding mismatch of statistics during design and operation, and
accounting for error propagation due to packet loss. However, the
severe non-convexity of the cost function, especially given the piece-
wise linearity of the quantizer, makes it extremely challenging to
find an optimal solution for the joint design of predictor and quan-
tizer. That is, the current design approaches cannot sense the global
minimum and can easily get trapped in poor local minima.

In this paper, we present a new framework which tackles all the
challenges in design of error-resilient predictive compression sys-
tem to achieve a near optimal solution. Inspired by the principles
of statistical physics and information theory, deterministic anneal-
ing (DA) was proposed as a powerful non-convex optimization tool
in [13]. DA offers two advantages: its probabilistic formulation re-
places piece-wise linear quantization with a differentiable cost func-
tion that can be jointly optimized for the predictor and quantizer pa-
rameters, and its annealing schedule avoids many poor local minima
of the cost surface. While DA based ACL design was proposed in
[14], the impact of packet loss was not accounted. Instead, we pro-
pose a new approach that embeds ACL design in DA framework to
minimize EED at each iteration. Substantial gains in simulations
validates the utility of the proposed approach.

2. PROBLEM FORMULATION

Fig. 1 shows a predictive compression system. Let xn, 0 ≤ n ≤ N
be the input samples. Encoder predicts a sample xn based on pre-



viously reconstructed samples as x̃e,n. The prediction error, en =
xn− x̃e,n, is quantized to ên. These quantized values are communi-
cated to the decoder over the channel. At the decoder, the quantized
error is added to the predicted value x̃d,n to get the reconstructed
sample x̂d,n. When there is a packet loss, the decoder does error
concealment and thus the decoder reconstructed samples x̂d,n differ
from the encoder reconstructed samples x̂e,n. We need to minimize
the distortion as experienced by the decoder. Since the channel is not
deterministic, the decoder reconstructed sample is a random variable
to the encoder. This means the encoder can only estimate the dis-
tortion as seen at the decoder. With squared error as the distortion
metric, we can calculate the expected EED as,

E{D} =

N∑
n=0

E{(xn − x̂d,n)2}

=

N∑
n=0

x2n − 2xnE{x̂d,n}+ E{x̂2d,n}. (1)

It is evident that in order to estimate EED, we need to accurately esti-
mate the first and second order moments of the decoder reconstruc-
tion. The overall problem is to design (PE , PD, QE) to minimize
E{D}.

3. BACKGROUND

3.1. EED Estimation

A recursive method to optimally estimate the expected decoder dis-
tortion per pixel in video coding was proposed in [7]. The decoder
distortion was estimated by recursively computing the first and sec-
ond order moments of the decoder reconstruction. The estimated
EED was used to optimally switch between inter and intra modes for
coding a macroblock, limiting the error propagation due to packet
loss. To minimize the expected EED, a new prediction framework
was proposed in [8], which used the expected decoder reconstruction
for the prediction as against to the traditional approach of using the
reconstructed samples at the encoder.

3.2. Open-loop, closed-loop and asymptotic closed-loop design

In the open-loop approach [9], the predictor and quantizer are de-
signed using the original source samples. Predictor, P , is designed
based on correlation of original samples and the quantizer train-
ing error is also generated using the original samples, i.e., en =
xn − P (xn−1). Although this approach provides a stable training
set of prediction errors, it suffers from the serious shortcoming that
the decoder doesn’t have access to original samples. In the closed-
loop approach [10], the predictor and quantizer are designed itera-
tively. In iteration i, given previous iteration predictor, P (i−1), and
quantizer, Q(i−1), a training set of errors,

e(i)n = xn − P (i−1)(x̂
(i)
n−1), (2)

is generated, where,

x̂(i)n = P (i−1)(x̂
(i)
n−1) +Q(i−1)(xn − P (i−1)(x̂

(i)
n−1)). (3)

These errors are used to design a new quantizer, Q(i). Then given
Q(i), and P (i−1), new reconstructed samples,

x̂′
(i)
n = P (i−1)(x̂′

(i)
n−1) +Q(i)(xn − P (i−1)(x̂′

(i)
n−1)), (4)

+

Q(i)

+

Q(i)

◦

P (i−1) Σ•

◦
◦

P (i−1) Σ•

◦
◦

ê
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Fig. 2. Asymptotic closed loop design

are generated and used to design a new predictor, P (i). Notice in (4),
Q(i) is used with (xn − P (i−1)(x̂′

(i)
n−1)), while it was designed for

(xn−P (i−1)(x̂
(i)
n−1)). Similarly, P (i) is designed for x̂′

(i)
n , but used

in the next iteration with x̂(i+1)
n . This mismatch in statistics between

design and operation, builds over time through the prediction loop,
leading to instability of the iterative closed-loop design, especially
for low bitrates. This instability problem was addressed by the ACL
approach [11], which is built based on best of both the worlds. At
each iteration, prediction is based on the reconstructed samples of
the previous iteration and the training set is generated in an open loop
fashion, i.e, e(i)n = xn − P (i−1)(x̂

(i−1)
n−1 ). A new quantizer, Q(i), is

trained using these errors, and then used to quantize the same errors,
and generate reconstructed samples,

x̂(i)n = P (i−1)(x̂
(i−1)
n−1 ) +Q(i)(e(i)n ). (5)

These samples are now used to train a new predictor, P (i). The ACL
approach is illustrated in Fig. 2, and one can clearly observe that the
quantizer and predictor are used for exactly the same statistics they
were designed for. Upon convergence, the reconstructed samples re-
main the same over iterations. Thus, predicting from x̂

(i−1)
n−1 is same

as predicting from x̂
(i)
n−1, which is essentially closed-loop operation.

3.3. ACL-EED

Design of a predictive compression system via ACL approach to
minimize EED estimate was proposed in [12]. For simplicity of
presentation, a first order prediction model was assumed. Thus the
decoder prediction is, x̃d,n = αx̂d,n−1. Also each packet was
assumed to carry one quantized error sample. If the packet is re-
ceived, the quantized error is added to the decoder prediction, i.e,
x̂d,n = x̃d,n + ên. In the event of packet loss, the residue is consid-
ered zero. With this framework and a packet loss rate of p, the first
and second order moments were recursively estimated to be,

E{x̂d,n}= (1−p)E{(αx̂d,n−1 + ên)}+ pE{αx̂d,n−1}
= αE{x̂d,n−1}+ (1− p)ên (6)

E{(x̂d,n)2}= (1−p)E{(αx̂d,n−1 + ên)
2}+ pE{(αx̂d,n−1)

2}
= α2E{(x̂d,n−1)

2}+(1−p)(ê2n+2αE{x̂d,n−1}ên)
(7)

Similar to [8], the prediction at the encoder was based on the ex-
pected decoder reconstruction i.e, x̃e,n = αE(x̂d,n−1). The optimal



predictor which minimizes the expected EED was derived to be,

α =

∑N
n=0E{x̂d,n−1}(xn − (1− p)ên)∑N

n=0E{(x̂d,n−1)2}
. (8)

Asymptotic closed loop design in two nested loops was employed to
obtain optimal predictor and quantizer. In an iteration of the outer
loop, decoder moments were fixed, and the predictor and quantizer
were optimized in the inner loop in the ACL way. The decoder mo-
ments were then updated, again in the ACL way, using previous mo-
ments from the previous iteration. Upon convergence, the operation
mimicked closed-loop.

4. PROPOSED APPROACH

The piece-wise linear nature of the quantizer makes it difficult to
optimize a joint cost function of the predictor and quantizer, since
the derivative vanishes almost everywhere. Hence the iterative ap-
proach was employed before. However, this only ensures optimality
of the quantizer or the predictor separately for the local training set
in an iteration. This approach naturally does not guarantee global
optimality, and can easily get trapped in poor local minima. We thus
propose a novel approach of coupling the ACL based minimization
of expected EED with the DA framework to overcome the subop-
timality of the prior technique. The proposed approach builds on
DA introduced in [13], which is based on the intuition gained from
annealing process in physical chemistry, where certain systems are
driven to their low energy states by gradually cooling the system.
Analogously, we introduce controlled randomness in the optimiza-
tion procedure, but deterministically minimize the expected EED,
thereby avoiding many poor local minima. The amount of random-
ness is measured by Shannon’s entropy and is essentially character-
ized by the temperature of the system. The encoding rule is no longer
piecewise linear, and is differentiable everywhere paving our way
to jointly optimize predictor and quantizer. It can be easily shown
that quantizer distortion given a training set is independent of EED.
With {yj} being the codebook and Pj|n being the association prob-
ability of en to codevector yj , similar to the formulation in [15],
the total squared error distortion which is minimized in the entropy
constrained quantizer design in an iteration i of ACL will now take
probabilistic version as,

J =
∑
n

∑
j

P inP
i
j|n

{
(ein − yij)2 − λ log(P ij )

}
, (9)

where, P in is the probability of training vector. The randomness is
measured by Shannon’s entropy as,

H = −
∑
n

∑
j

P inj log(P
i
nj), (10)

where, P inj = P inP
i
j|n, is the joint probability distibution of the

codevector and the training sample. With the degree of random-
ness measured by Shannon’s entropy and the distortion as defined
above, the problem at hand can be viewed as minimization of the
Lagrangian cost function,

F = J − TH. (11)

The degree of randomness is controlled by T , which characterizes
the temperature. Assuming uniform distribution over the training set,
it can been shown that minimizing the lagrangian cost with respect

Fig. 3. Flow chart of the proposed algorithm

to the association probabilities leads to Gibb’s distribution for the
association probabilities:

P ij|n =
e−{(e

i
n−y

i
j)

2−λ log(P i
j )}∑

k e
−{(ein−yik)

2−λ log(P i
k
)}
. (12)

It is to be observed that at high temperatures, we in fact maximize
entropy of the system and thus the association probabilities are uni-
form. As we lower the temperature, we trade entropy for distor-
tion and the system becomes more deterministic. In the probabilistic
framework, the recursive calculation of the decoder moments now
becomes,

E{x̂id,n} = αiE{x̂i−1
d,n−1}+ (1− p)

∑
j

P ij|ny
i
j

E{(x̂id,n)2} = (αi)2E{(x̂i−1
d,n−1)

2}+

(1− p)
∑
j

P ij|n{(yij)2 + 2αE{x̂i−1
d,n−1}y

i
j}. (13)



The optimal predictor now satisfies,

∂E{D}
∂αi

= −2
∑
n

xnE{x̂i−1
d,n−1}+

∑
n

2αiE{(x̂i−1
d,n−1)

2}+∑
n

∑
j

2(1− p)P ij|nyijE{x̂i−1
d,n−1}

= 0. (14)

Hence,

αi =

∑N
n=0E{x̂

i−1
d,n−1}(xn − (1− p)

∑
j P

i
j|ny

i
j)∑N

n=0E{(x̂
i−1
d,n−1)

2}
. (15)

The optimal quantizer at iteration i satisfies,

∂

∂yj

∑
n

∑
j

P inP
i
j|n((e

i
n − yij)2 − λ log(P ij )) = 0. (16)

Hence,

yij =

∑
n P

i
j|ne

i
n∑

n P
i
j|n

. (17)

The overall proposed algorithm is illustrated as a flow chart in Fig. 3.

5. SIMULATION RESULTS

In our simulations, we compared the standard closed loop technique
(CL) and the ACL-EED method proposed in [12] with the proposed
approach (referred to as DA-ACL-EED). While the proposed design
approach is applicable to any predictive compression system, speech
files were considered for testing since linear prediction is commonly
employed in speech coding. Among the set of 6 speech files from
EBU SQAM database [16], 3 speech files were used to train the sys-
tem and the remaining three were used for testing. The reconstructed
SNR depends on the number of quantization levels for both ACL-
EED and DA-ACL-EED. For fairness of comparison and to simplify
simulations, the number of quantization levels was chosen to be four.
The expected decoder moments and the prediction coefficient were
initialized to zero. Simulations were carried out for different packet
loss rates and the reconstructed SNR at the decoder was observed.
In order to simulate the behavior of the channel, we randomly gen-
erated 20 packet loss patterns for each packet loss rate and averaged
the reconstructed SNR. Fig. 4 shows the average reconstructed SNR
for different packet loss rates and different entropy constraints. It can
be seen that the current approach consistently performs better than
CL and ACL-EED approaches with gains as high as 9.4 dB com-
pared to CL and 2.7 dB compared to ACL-EED, and outperforms
them significantly at low bitrates, highlighting the shortcomings of
the prior approaches.

6. CONCLUSIONS

This paper describes a novel near optimal design approach for error-
resilient predictive compression systems. The design iterations are
open loop in nature but eventually converge to closed loop opera-
tion. The system is trained in a probabilistic way using deterministic
annealing, avoiding poor local minima and simultaneously optimiz-
ing both predictor and quantizer. Expected EED is minimized to
give parameters that are robust to channel loss. Substantial gains for
different packet loss rates and entropy constraints demonstrates the
utility of the new approach.
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Fig. 4. Reconstructed SNR vs average bits per sample for packet
loss rate (a) 5% (b) 10% and (c) 20%
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