SPHERICAL VIDEO CODING WITH GEOMETRY AND REGION ADAPTIVE TRANSFORM
DOMAIN TEMPORAL PREDICTION

Bharath Vishwanath and Kenneth Rose

Department of Electrical and Computer Engineering, University of California Santa Barbara, CA 93106
{bharathv, rose} @ece.ucsb.edu

ABSTRACT

Many virtual and augmented reality applications depend crit-
ically on efficient compression of spherical videos. Current
approaches apply a projection geometry to map a spherical
video onto the plane(s), wherein a standard codec can be used
for compression. Video coders employ simple pixel copy-
ing from reference frames for inter-prediction, which ignores
underlying spatial correlations, and is hence suboptimal. A
novel paradigm of transform domain temporal prediction
(TDTP) was developed previously in our lab to effectively
overcome this suboptimality of standard video coding. This
paper is motivated by the observation that projected spheri-
cal videos exhibit significantly more statistical variation due
to i) the choice of projection geometry and ii) position of
the block on the sphere, which reflect variations in sampling
density and various statistical features. To account for such
variations, we propose geometry and region adaptive TDTP
that is tailored to spherical videos. For a given geometry, the
sphere is divided into regions, according to expected signal
statistics, and prediction filters are designed for each region.
Experimental results show significant performance gains as
evidence for the efficacy of TDTP in spherical video coding.

Index Terms— spherical video coding, virtual reality,
motion compensation, temporal prediction

1. INTRODUCTION

Spherical video or 360-degree video offers an immersive ex-
perience for users by capturing the surroundings on a sphere
enclosing the user who can then view in any desired direc-
tion. With its increased field of view, spherical video gener-
ates enormous amounts of data and necessitates efficient com-
pression. Current approaches simply project a spherical video
onto planes via different projections such as the equirectangu-
lar projection, cubemap, etc., [1]. This facilitates the use of
standard coders to compress the projected video. The pro-
jected videos are sampled uniformly in the plane, thus induc-
ing non-uniform sampling on the sphere.

Modern video coders perform motion compensated pre-
diction to exploit temporal redundancies. A translation mo-
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tion model is employed to identify a matching reference block
in a previously reconstructed frame, which is used as the pre-
diction signal. In the case of spherical video, advanced mo-
tion models were proposed to perform motion compensation
on the sphere [2-4]. All these approaches perform pixel do-
main copying for prediction, which largely ignores underly-
ing spatial correlations, rendering them suboptimal. Many
approaches that account for spatial correlations in standard
video coding including multi-tap filtering [5, 6] and three-
dimensional subband coding [7,8] often result in high encoder
complexity. In an earlier work in our lab, a fundamentally dif-
ferent approach of performing temporal prediction in trans-
form domain was proposed [9]. The core idea was to first
spatially decorrelate the block by a transform such as the dis-
crete cosine transform (DCT), and model the temporal (inter-
frame) evolution of each transform coefficients as a first order
auto-regressive process. TDTP offers two fold benefits by: i)
achieving both spatial and temporal decorrelation and ii) cap-
turing the variations in the temporal correlations of the DCT
coefficients which is otherwise hidden in the pixel domain.

In earlier work, we have established the benefits of TDTP
in regular video coding [10, 11]. Projected spherical videos
exhibit signal statistics that differ considerably from standard
videos. Clearly, the statistics vary across different projection
geometries. Further, uniform sampling in the projection for-
mat induces varying sampling density on the sphere. Thus,
for a given geometry, signal statistics vary significantly for
different regions of the sphere. For instance, let us consider
temporal correlations of DCT coefficients for blocks along
their motion trajectories in equatorial versus polar regions in
ERP. Such correlations, extracted from a sample sequence,
are tabulated in Table 1 and clearly illustrate that they vary
significantly for different regions on the sphere. Motivated
by these observations, we propose to design TDTP filters that
adapt to these variations in statistics. TDTP filters are tailored
separately for different geometries. Further, for each geom-
etry, the sphere is divided into regions of similar sampling
density (or expected statistics) and TDTP filters are designed
for each region. Note that the proposed approach achieves ge-
ometry and spatial adaptivity without incurring any additional
cost in side-information.

A major challenge, in TDTP filter design, is design insta-



Table 1. Transform domain temporal correlations for blocks
in ERP in :

(a) Equatorial region

0.99 | 096 | 092 | 0.91 | 0.89 | 0.84 | 0.79 | 0.67
0.97 | 095 | 091 | 0.87 | 0.83 | 0.78 | 0.73 | 0.58
0.96 | 093 | 0.88 | 0.86 | 0.84 | 0.75 | 0.69 | 0.6

093 | 0.88 | 0.88 | 0.84 | 0.79 | 0.72 | 0.64 | 0.58
0.89 | 090 | 090 | 0.84 | 0.75 | 0.66 | 0.62 | 0.46
0.83 1 0.89 | 0.84 | 0.83 | 0.70 | 0.58 | 0.54 | 0.44
0.83 | 0.81 | 0.82 | 0.74 | 0.62 | 0.53 | 049 | 04

0.77 | 0.71 | 0.62 | 0.66 | 0.58 | 0.45 | 0.39 | 0.38

(b) Polar region

099 | 094 | 089 | 0.71 | 0.6 | 0.37 | 0.37 | 0.08
0.97 | 098 | 090 | 0.69 | 0.62 | 0.34 | 0.3 | 0.23
098 | 1.0 | 094 | 0.79 | 0.66 | 0.49 | 0.21 | 0.32
0.96 | 096 | 095 | 0.77 | 0.53 | 0.33 | 0.3 | 0.22
094 | 092|092 |0.79 | 043 | 0.23 | 0.13 | 0.32
09 | 0.88 084 | 075|052 024|027 | -0.04
0.82 | 0.78 | 0.82 | 0.72 | 049 | 0.11 | 0.3 | 0.11
0.71 | 0.78 | 0.62 | 0.61 | 0.48 | 0.05 | 0.32 | 0.23

bility due to the closed loop nature of the coders. The predic-
tion filters are applied to reconstructed samples, which in-turn
depend on the prediction filters. This gives a glimpse of the
closed loop conundrum. Standard closed loop design often
suffers from significant (and sometimes catastrophic) design
instability due to error propagation in the prediction loop. An
effective remedy, called asymptotic closed loop (ACL) de-
sign, was proposed in [12]. In ACL, prediction is performed
iteratively in an open loop fashion, ensuring design stabil-
ity, but such that upon convergence, reconstructed samples
remain unchanged from iteration to iteration, so that the re-
sulting system is optimal for closed loop operation. In this
paper, we use ACL as a stable platform for designing TDTP
filters.

2. BACKGROUND

2.1. Transform Domain Temporal Prediction (TDTP)

TDTP models the temporal evolution of DCT coefficients as a
first order AR process. Let x,, be a particular DCT coefficient
in a given block in frame n, along a motion trajectory. The
evolution of x,, is thus modeled as,

Tp = pj?n—l +en (1)

where Z,,_1 is the corresponding DCT coefficient of the block
in the reconstructed frame n — 1 along the motion trajectory
and e, is the innovation sequence. The optimal prediction
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Fig. 1. Asymptotic closed loop design (arrows depict the pre-
diction direction)

coefficient that minimizes the mean square prediction error is
given by,

p— Elnin 2)
>4
By performing temporal prediction in DCT domain,
TDTP effectively achieves both temporal and spatial decor-
relation. Further, TDTP captures the variations in temporal
correlations for different frequencies by optimizing p for each
DCT coefficient.

2.2. Asymptotic Closed Loop Design

The optimal prediction filter depends on the reconstructions,
as is evident from (2). These reconstructions further depend
on the prediction coefficient. This inter-dependency poses a
major challenge in designing prediction filters. In the stan-
dard closed-loop technique [13], predictors are designed it-
eratively. The predictor designed for the reconstructed se-
quence in iteration ¢ — 1 is applied to the reconstructions in
the next iteration 7. The resulting error, due to statistical mis-
match, propagates in the prediction loop causing a growing
design instability. ACL design effectively resolves this issue
by updating the reconstructions in an open-loop fashion as il-
lustrated in Fig. 1. Note that predictors are applied to the
same set of reconstructions they were designed for, ensuring
better reconstructions and hence better predictions over iter-
ations. On convergence, the reconstructed sequence remains
essentially unchanged. Therefore, predicting from the pre-
vious iteration’s reconstructions mimics predicting from the
current iteration, i.e., it effectively operates in closed loop.
Thus, ACL asymptotically optimizes the predictors for closed
loop operation.



Fig. 2. Sphere sampling pattern for equirectangular projection

3. PROPOSED METHOD

Our earlier work on TDTP focused on learning TDTP filters
in the standard video coding scenario. In this paper, we focus
on spherical videos and address the challenges therein. Since
different projection formats induce different sampling on the
sphere, we propose to have different TDTP filters/modes for
different projection formats. As discussed earlier, for a given
geometry, the sampling density varies for different regions on
the sphere. We first consider different projection formats and
define regions of similar signal statistics on the sphere and
then discuss the overall encoding paradigm. Although for
now regions are defined heuristically based on analysis of the
geometry, future work will develop data-based algorithms to
directly optimize the regions.

3.1. Defining regions on the sphere
3.1.1. Equirectangular Projection (ERP)

The sphere sampling for ERP is shown in Fig. 2. For ERP, the
vertical sampling density is constant. However, the horizontal
sampling density increases with respect to the elevation 6 as
sec). Thus, for ERP, we define regions based on the elevation
of the center of the block on the sphere. Let ., be the elevation
of the center of the current prediction unit. The region 7 is
defined as,

1

1if |6,] < sin*l(g)
e, 1 1,2
= 2ifsin (§)<|9c|§sm (g)

= 3 otherwise 3)

The partitions are chosen such that the area of each region
is same on the sphere.

Fig. 3. Sphere mapping for Equi-Angular Cubemap

3.1.2. Equi-angular Cubemap

Equi-angular cubemap is shown in Fig. 3. In a traditional
cubemap, the sphere is enclosed in a cube and each face of
the cube is uniformly sampled, resulting in non-uniform sam-
pling on the sphere. However, sampling in EAC is done such
that it results in near uniform sampling on the sphere [14].
Although, EAC has similar sampling density throughout the
sphere, we nevertheless define regions as in (3) based on the
expectation that object motion would exhibit different char-
acteristics in each region, resulting in different signal statis-
tics. Recall that data-based optimization of EAC regions is
currently being investigated.

3.1.3. Equatorial Cylindrical Cubemap

Equatorial Cylindrical cube-map (ECP) was proposed in [15].
In ECP, the equatorial region corresponding to {—sin*% <
6 < sin~! %} is mapped to four faces of the cube via Lam-
bert equi-area sampling [1]. Each polar region is mapped to a
circular region in a plane and then stretched to fit the face of a
cubemap. Even with ECP, the sampling pattern changes with
respect to the elevation of the block on the sphere. We thus
define three regions similar to ERP as in (3).

3.2. Overall Design Paradigm

The overall design follows a two loop ACL design similar
to [10]. Inner-loop involves designing TDTP filters for a fixed
encoder decision and in the outer loop, the encoder is given
the new set of TDTP filters to update various decisions such as
quad-tree partition, motion field etc. In the inner loop, with
the encoder decisions held fixed, TDTP filters are designed
for each region r in ACL fashion. In an iteration 7 of ACL,
p?v, 1. the prediction filter for (k, [ )" DCT coefficient is given

by,
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where, E{} is the expectation operator, T ;. is the
DCT coefficient of a block in region r in frame n of the
source video and £}, ; ,, . is the reconstructed DCT coefficient
of reference block in frame n — 1. These filters are used to
update the reconstructions in open loop fashion as,

‘i‘;:_l,ln,r = pi‘,,l,ri}c,l,n—l,r + é;c,l,n,r (5)

where ¢}, 1,n,r 18 the quantized prediction error. Upon con-

vergence in the inner loop, various encoder decisions are up-

dated in the outer loop with the encoder using the TDTP fil-

ters learnt in the inner-loop. The overall design paradigm is
illustrated in Algorithm 1.

Define regions as in (3);
Get initial closed loop encoder reconstruction ;
while outer_iter < max_outer_iter do
Fix encoder decisions;
while MSE decreases do
(a) learn TDTP filters for each region on
sphere;
(b) Update reconstructions in ACL fashion ;
end
Update encoder decisions with new TDTP filters
and get new closed loop reconstruction;

end
Algorithm 1: Overall design approach

4. EXPERIMENTAL RESULTS

To obtain experimental results, region-adaptive TDTP is im-
plemented within HM-14.0 [16]. The geometry mappings
are done using the projection conversion tool of [17]. We
chose the low delay P profile in HEVC for experiments. To
simplify the experiments, we only use the previous frame as
the reference frame. The projection formats were ERP, EAC
and ECP. We encoded 30 frames of five video sequences over
four quantization parameter (QP) values of 22, 27, 32 and 37.
Since statistics vary for different QP, we design different fil-
ters for different QPs. In order to illustrate the full potential of
proposed approach, we learn different TDTP filters for each
sequence and for each region in a given projection format.
The resolution for ERP was 2K and the face-width for EAC
and ECP was 512. We measured the distortion in terms of
end-to-end weighted spherical PSNR [18], as recommended
in [19]. Bitrate reduction is calculated in the standard manner
in terms of BD-rate [20]. The bit-rate savings for each projec-
tion format are tabulated in Table 2. It is evident that region
adaptive TDTP consistently outperforms HEVC across differ-
ent projection formats. The RD curve for bicyclist sequence
with EAC projection format coding is shown in Fig. 4.
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Fig. 4. RD curves for bicyclist sequence for equiangular cube-
map

Table 2. Bit-rate savings (%) for Y component over HEVC
with different projection formats

Geometry | Sequence | Bit-rate Reduction

Bicyclist 7.8

ERP Chair 9.2
Balboa 7.2

Broadway 7.3

Glacier 5.1

Average 7.3
Bicyclist 10.6

EAC Chair 8.4
Balboa 7.1

Broadway 8.6

Glacier 4.8

Average 7.9

Bicyclist 8.2

ECP Chair 8.1
Balboa 7.0

Broadway 10.1

Glacier 52

Average 7.7

5. CONCLUSIONS

In this paper, we proposed a transform domain temporal pre-
diction paradigm for spherical videos that adapts for varying
statistics on the sphere for different geometries. The issue of
design instability was handled by an asymptotic closed-loop
design approach. Significant gains demonstrate the potential
of TDTP for spherical video coding, even in conjunction with
heuristic definition of the regions. Future work will focus on
developing data-based algorithms to optimize the regions on
sphere.
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