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ABSTRACT

Transform coding is a key component of video coders, tasked
with spatial decorrelation of the prediction residual. There is
growing interest in adapting the transform to local statistics
of the inter-prediction residual, going beyond a few standard
trigonometric transforms. However, the joint design of multi-
ple transform modes is highly challenging due to critical sta-
bility problems inherent to feedback through the codec’s pre-
diction loop, wherein training updates inadvertently impact
the signal statistics the transform ultimately operates on, and
are often counter-productive (and sometimes catastrophic).
It is the premise of this work that a truly effective switched
transform design procedure must account for and circumvent
this shortcoming. We introduce a data-driven approach to de-
sign optimal transform modes for adaptive switching by the
encoder. Most importantly, to overcome the critical stability
issues, the approach is derived within an asymptotic closed
loop (ACL) design framework, wherein each iteration oper-
ates in an effective open loop, and is thus inherently stable,
but with a subterfuge that ensures that, asymptotically, the de-
sign approaches closed loop operation, as required for the ul-
timate coder operation. Experimental results demonstrate the
efficacy of the proposed optimization paradigm which yields
significant performance gains over the state-of-the-art.

Index Terms— inter-prediction, multi-modal transforms,
asymptotic closed-loop, spatial transform

1. INTRODUCTION

Transform coding is an essential component in image and
video compression, wherein it is applied to the prediction
residual after a block of pixels has undergone intra or inter-
prediction. Here, the objective of transform coding is to elim-
inate spatial correlations in the prediction residual, and hence
achieve energy compaction in the transform domain. Given
known and stationary signal statistics, it is well known that
the Karhunen- Loève transform (KLT) is the optimal decorre-
lating transform. However, its dependency on signal statistics
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and its high computational complexity compromise its practi-
cality. Instead, the discrete cosine transform (DCT) has been
the most widely adopted transform due to its fast implemen-
tation and good energy compaction property, as well as the
theoretical justification provided to its ability to approximate
performance of KLT on certain Gauss-Markov processes [1].

Recently, there has been growing interest in switched
transforms that adapt to variations in signal statistics. Much
of the work on such transform design focused on the intra-
prediction residual, including the derivation of asymmetric
trigonometric transforms to leverage the directionality of
intra-prediction, which were further shown to approach KLT
optimality under mild Markovian assumption [2] as well as
several other approaches to mode-dependent transforms (e.g.,
[3], [4]). The design of transforms for inter-prediction resid-
uals, however, attracted significantly less attention, perhaps
due to the fact such transforms do not exhibit as “obvious”
properties such as the directionality inherent to intra predic-
tion modes, and are hence more challenging to design. It
is nevertheless important to note that the vast majority of
video blocks are predicted temporally, which implies that
progress here is likely to have more impact on the overall
performance. This motivates the focus of this paper, namely,
transforms optimization for inter-prediction residual statis-
tics. The latest open source codec AV1 [5] allows switching
within a set of known trigonometric transforms such as DCT
and ADST in order to capture some additional gains. The
authors in [6] also propose to use known trigonometric trans-
forms for inter-prediction residuals which was later adopted
in JEM codec [7]. However, to realize the full potential of
multi-modal transforms, it is necessary to look beyond the
known trigonometric transforms, and employ a data-driven
approach that statistically learns the optimal set of trans-
forms. Few recent contributions (e.g., [8]) propose online
learning of transforms. As such an approach significantly
increases the computational complexity of the encoder, we
will focus on the practical alternative of an offline design
paradigm. For a recent approach in this vein see [9], where
residue statistics are collected from a training set and the
resulting KLT is given as an option during encoding. Other



relevant approaches include the 1-D transforms developed
in [10], directional DCTs in [11], row column transforms in
[12] and layered-Givens transforms in [13]. All these ap-
proaches largely ignore what is a critical difficulty (a variant
on the proverbial “chicken and egg” problem) in closed-loop
iterative design of modules of a predictive coding system.
Specifically, in the case of transforms, an updated transform
changes the reconstructions, which in turn modify the pre-
diction residual statistics on which the transform update was
premised. This fundamental difficulty strongly motivates the
work in this paper, and is further discussed below.

A major challenge in the joint design of multiple trans-
form modes is due to the instability inherent to the closed-
loop design of the coder. Updated transforms are applied to
prediction residuals to obtain new reconstructions, which in
turn affect the prediction residual statistics. This complex in-
terplay between the transforms and reconstructions makes ef-
fective transform design quite elusive. Standard closed-loop
design often suffers from significant (and sometimes catas-
trophic) design instability due to error propagation through
the prediction loop. An effective remedy, called asymptotic
closed-loop (ACL) design, was proposed in [14] in the con-
text of predictor and quantizer design. In this paper we extend
the ACL paradigm to effective transform design. Specifically,
transforms are designed iteratively, in an open loop that en-
sures design stability, but with a subterfuge that guarantees
that upon convergence, the transforms are optimal for closed
loop operation. Thus, in this paper, we use ACL as a sta-
ble hence effective platform for designing multi-mode trans-
forms. Note that, while the focus is on the design of separable
transforms which are preferred due to their lower complex-
ity, the proposed design paradigm is general and applicable to
non-separable transforms.

2. BACKGROUND

2.1. Separable KLT

Let e be a random vector of (say, prediction residual) samples,
whose covariance matrix is Ce. Let T be the transform matrix.
The transform-domain signal vector y is given by

y = Te, (1)

and its covariance matrix Cy is

Cy = TCeT′ (2)

The optimal transform that diagonalizes Cy, i.e., decorrelates
the components of y is precisely KLT, whose basis vectors are
the eigenvectors of Ce.

In the context of video coding, let E be the random pre-
diction residual block. Let Tr and Tc be the respective KLTs
for the row covariance Cr and column covariance Cc, of E.
The transform-domain signal can be written as,

Y = TcET′r (3)

KLTs are optimal for given statistics of the prediction
residual signal. But updating the transforms changes the
reconstructions and hence also the residual signal statistics,
requiring a new KLT calculation. Thus, transform design
requires an iterative procedure. Next we summarize the stan-
dard iterative approach.

2.2. Closed-Loop Design

Standard closed-loop techniques (see e.g., [15]), when ap-
plied to transform design, employ transforms trained on the
residual sequence of iteration i to transform the residue in the
next iteration i+ 1, i.e,

yi+1 = Tiei+1 (4)

where the residual ei+1 = xn − x̂i+1
n−1 is the prediction error

in iteration i+1 (assuming prediction coefficient of one, as is
common practice in video coding). Thus transform Ti, opti-
mal for the previous residual sequence {ei}, is in fact applied
to a potentially very different residual sequence in iteration
i+1. This results in statistical mismatch which tends to grow
as errors propagate in the prediction loop, and the resulting in-
stability may prove catastrophic at low rates. Fig. 1 illustrates
closed-loop design.

Fig. 1. Closed-loop design

3. PROPOSED METHOD

In this section, we propose a stable design paradigm for learn-
ing the transforms. Before delving into the design, we note
that the inter-prediction residual exhibits significant varia-
tions in statistics. To cover a wide spectrum of statistics,
we propose to design “super-modes” of transforms, wherein
each super-mode is a collection of M transform modes. The
adaptivity is such that the encoder can switch between super-
modes at the group-of-pictures (GOP) level, and can further
switch between the transforms in a super-mode at the block
level. Thus, the problem at hand is to design a set of S



super-modes {Ts}, s = 1, 2..S, wherein each super-mode
s consists of M pairs of row and column transform modes
denoted {{Ts,m,r,Ts,m,c}},m = 1, 2..M . An iterative design
technique is needed to optimize transforms and update recon-
structions. A clustering based framework is presented first,
to enable super-modes design, given a training set of residual
sequences.

3.1. Clustering

Let {Ei
b,n,g} be the training sequence of prediction residual

where Ei
b,n,g is block b in frame n of GOP g, obtained by

subtracting from source block Xb,n,g its motion-compensated

prediction X̂
i

bmv,n−1,g

Ei
b,n,g = Xb,n,g − X̂

i

bmv,n−1,g (5)

To design the super-modes, we employ an algorithm in the
spirit of “K-means clustering”, which iterates between as-
signing to each GOP the best super-mode super-mode (“near-
est neighbor” step) and then optimizing the super-modes to
match their GOP clusters (“centroid” step), which specifically
means designing M transform modes that optimally match
the statistics of all GOPs that share the super-mode. These M
modes are again designed in a “K-means clustering” fashion,
where blocks are assigned to M modes followed by optimal
row and column transforms design for each mode. Note that
the mode assignment decisions are RD-optimal and take into
account the total cost of coding the transform coefficients and
signaling these modes to the decoder. This constitutes the
re-estimation of the super-modes. With the designed super-
modes, the GOPs are re-clustered and the process is repeated
until convergence.

We next consider how to embed within the approach an
ACL paradigm for transform design so as to avoid the notori-
ous instability of closed-loop design.

3.2. Asymptotic Closed Loop Design

As discussed in 2.2, the main shortcoming of the closed-loop
approach is the design instability due to error propagation in
the prediction loop. ACL design effectively resolves the sta-
bility issue by updating the reconstructions in an open-loop
fashion as illustrated in Fig. 2. The updated transforms are
used with the same set of residual sequences for which they
were designed. This ensures increasingly better reconstruc-
tions over the iterations. However, on convergence, the re-
constructed sequence remains essentially unchanged. There-
fore, predicting from the previous iteration’s reconstructions
approaches equivalence with predicting from the current iter-
ation, i.e., it effectively operates in closed-loop. Thus, ACL
asymptotically optimizes transforms for closed-loop opera-
tion. For the problem at hand, given optimal super-modes
from a design iteration i, the transform signal is obtained as,

Fig. 2. Asymptotic closed-loop design

Yi
b,n,g = Ti

c,bestE
i
b,n,gTi′

r,best (6)

where Ti
c,best,Ti

r,best are the best row and column trans-
forms chosen by the encoder from the transforms designed in
iteration i. This is followed by, quantization, de-quantization
and inverse transform to obtain the block Ê

i

b,n,g . The recon-
structions are updated as,

X̂
i+1

b,n,g = X̂
i

bmv,n−1,g + Ê
i

b,n,g (7)

The overall design procedure has been illustrated in Al-
gorithm 1. First, a closed-loop initialization is performed to
obtain a reconstructions sequence and random assignment
of GOPs to super-modes. Standard trigonometric trans-
forms are used as initialization for the M transform modes
in each super-mode. The algorithm then iterates between
super-modes design for a given residual statistics and the re-
construction update in ACL fashion. Note that, after a recon-
struction update, we update the encoder decisions including
the motion vectors, ensuring optimal encoder decisions for
the new reconstructions. We use these decisions to generate
prediction residual statistics for the next iteration. Upon con-
vergence, both the reconstructions and the encoder decisions
remain the same, and hence the system effectively operates in
closed-loop.

4. EXPERIMENTAL RESULTS

4.1. Main Results for VP9

We designed transforms for the VP9 codec, whose exper-
imental features included a set of sixteen separable trans-
form modes, namely, the four transforms { DCT, ADST,
FlipADST, IDTX } are available as row and column trans-
forms. This experimental feature of VP9 is now a part of
AV1. We considered the nine separable trigonometric trans-
form modes obtained as row-column transform combinations
of { DCT, ADST, FlipADST }, since the identity transform
(IDTX) is mostly intended for screen content sequences. To



initialize: reconstructed sequence from closed loop
encoder, super-mode assignment, transform modes;
while ACL iter < max ACL iter do

Generate residue statistics;
while Super mode iter< Max super mode iter

do
(a) Update super-modes:

while M mode iter< Max M mode iter do
(i) Assign best transform-mode to each

block ;
(ii) Design KLTs for each mode ;
break on convergence;

end
(b) Assign best super-mode to each GOP ;
break on convergence;

end
Update reconstructions in ACL fashion ;
Update encoder decisions with new transforms;
break on convergence ;

end
Algorithm 1: Overall design approach

simplify experiments, the block size was fixed at 8x8. The
training set consisted of nine cif sequences { bridge-far, mo-
bile, bride-close, highway, foreman, tempete, flower, city,
bus }. We trained four super-modes where each super-mode
consisted of nine separable transform modes. The training
proved to be sensitive to initialization, and we employed
multiple initializations for the super-mode assignment. The
training was done at constant bit-rate configuration of VP9.
The target bit-rates were chosen to be 200, 300, 500 and 800
Kbps. Since the residue statistic changes with bit-rate, we de-
sign four super-modes for each target bit-rate. The base-line
codec uses only DCT as the transform for inter-prediction
residual. Bit-rate reduction over the baseline is calculated
as per [16]. The results for the test set sequences (cif res-
olution) are shown in Table 1. The default trigonometric
transforms now used by AV1 yield on average 2.5% bit-rate
reduction. Designing super-modes with closed-loop (CL)
design yields 4.6% bit-rate reduction over base-line codec.
The proposed method with ACL design paradigm gains 3.5%
and 1.4 % over the trigonometric transforms and closed-loop
design respectively and yields significant gains of 6% over
the base-line codec.

4.2. Preliminary Results with AV1

To obtain very preliminary results for AV1, we replaced its
trigonometric transforms with the transforms we had de-
signed for VP9. The target bit-rate is reduced here to operate
in the same range of PSNRs as in the previous experiment.
Bit-rate reduction over AV1 for the test set is presented in
Table. 2. Note that, despite the fact that the transforms were
not designed directly on the residual statistics of AV1, they

Test Trigonometric CL Proposed
Sequence Transforms Design ACL Design

silent 2.0 2.9 3.5
soccer 2.7 3.8 5.4
akiyo 3.1 6.0 8.1

bowing -0.18 8.3 9.3
hall 1.2 3.3 3.7

mother-daughter 3.2 4.4 6.5
paris 2.3 3.0 3.8

coastguard 4.0 4.8 6.4
stefan 3.6 4.4 4.7

ice 4.1 5.6 9.0
Average 2.6 4.6 6.0

Table 1. VP9 experiment: % bit-rate savings on test set, for
Y component over base-line VP9 (uses DCT only)

Test Bit-rate Savings
Sequence over AV1

silent 1.1
soccer 1.0
akiyo 5.2

bowing 0.5
hall 0.6

mother-daughter 0.5
paris 0.8

coastguard 2.0
stefan 0.7

ice 3.8
Average 1.7

Table 2. Preliminary AV1 experiment (with transforms de-
signed for VP9): % bit-rate savings on test set for Y compo-
nent over AV1 (uses trigonometric transforms).

already offer half the gains, namely, 1.7% bit-rate reduction
on average. Experimental work to train the transforms within
the AV1 framework, is underway.

5. CONCLUSIONS

This paper presents an efficient offline-design procedure to
learn transforms for inter-prediction residuals. Critical design
instability was circumvented by deriving the method within
the asymptotic-closed loop framework. Significant bit-rate
reduction substantiates the potential of this data-driven ap-
proach to effectively learn transforms and outperform stan-
dard trigonometric transforms.
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