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Abstract—In this paper, we present new results on the achiev-
able rate-distortion regions in networked scalable compression
problems, based on a flexible codebook generation and binning
method. First, we consider the problem of scalable coding in the
presence of decoder side information, for which the prior work
analyzed the two important cases the degraded side information
where source X and the side information variables (Y1, Y2)
form a Markov chain in the order of either X − Y1 − Y2 or
X − Y2 − Y1. First, we present an example non-Markov side
information scenario where the proposed coding strategy achieves
a strictly larger rate-distortion region compared to prior work.
We then consider the problem of multi-user successive refinement
where different users that are connected to a central server via
links with different noiseless capacities strive to reconstruct the
source in a progressive fashion. It is shown that a prior rate-
distortion region is suboptimal in general, albeit its optimality
for a Gaussian source with MSE distortion, and the proposed
coding scheme achieves points beyond the achievable region of
prior work.

I. INTRODUCTION

In this paper, we present improved achievable regions
associated with two networked scalable coding (SC) problems.
Our first result pertains to a decoder side information setting,
depicted in Figure 1, where the base decoder reconstructs the
source, X , at distortion D1, with the help of side information
Y1. Similarly, the refinement decoder, with the help of Y2,
reconstructs X at distortion D2.

Steinberg and Merhav in [1] solved this problem when
X − Y2 − Y1 forms a Markov chain in this order. The main
mathematical coding tools in [1] are conditional codebook
encoding for SC part of the problem, as done in similar
problems in the absence of a side information [2], [3], used
in conjunction with binning to utilize the decoder side infor-
mation [4]. Tian and Diggavi studied the dual of this problem
in [5], where the base decoder has the better side information
i.e., X − Y1 − Y2. Authors introduced a new coding method,
i.e., nested binning a common codebook whose codeword
is decoded at both decoders. They showed that this coding
scheme achieves the complete rate-distortion region in the
important case of jointly Gaussian X,Y1, Y2 and mean squared
error distortion.

It is well understood that SC can be viewed as a special
case of the more general multiple description coding (MDC)
problem. Hence, the coding tools developed for MDC can be
employed for SC problems. Motivated by this fact, in [6], we

Encoder

Decoder 1

Decoder 2

R1

R2

X̂n(D1)

X̂n(D2)

Xn

Y n
1

Y n
2

Fig. 1. Problem-1 setup: scalable coding with decoder side information. The
case where X − Y2 − Y1 is denoted as SRWZ setting while X − Y1 − Y2

is called the SISC setting.
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Fig. 2. Problem-2 setup: Multiuser successive refinement (MSR).

proposed a variation of a coding method originally developed
for the L > 2 channel MDC problem in [7] (binned combi-
natorial message sharing (CMS)) for the aforementioned SC
problems with decoder side informations. For L > 2 channel
MDC, both CMS (without binning) coding [8] and CMS with
binning [7] improve the achievable region in [9] which was
then the benchmark for this problem. More recently, in [10],
Shirani and Pradhan further enhanced the achievable region
of L > 2 channel MDC problem utilizing coset codes, among
other mathematical tools, within the binned CMS framework
of [7].

The second problem we consider here is multi-user suc-
cessive refinement formulated in [11] as a “unique interplay
between the concepts of multi-resolution source coding and
source coding with side information”. In this problem, there
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are two users (strong and weak) who strive to reconstruct the
source in a progressive manner. The problem is depicted in
Figure 2, where the first and second receivers decode the
base layers of the weak and strong users, respectively. The
third decoder receives the base and refinement layers for the
weak user, and finally the fourth decoder receives all available
bitstreams as well as a refinement layer for the strong user.
This problem is studied in detail in [12] where the rate-
distortion region for a Gaussian source under MSE distortion
is derived.

In this paper, building on our earlier work in [6], we show
that the binned CMS method achieves points outside the
known regions for two example problems. Here, we reiterate
that the methods we use as benchmarks are designed for the
Gaussian-MSE scenarios for which they achieve the complete
region. Nevertheless, for these examples, they are the only
available benchmark coding strategies. Contributions in this
paper are summarized as follows:

• We consider the SC problem with side informations Yi =
[Zi,Wi] for i = 1, 2 where X−Z1−Z2 and X−W2−W1

form Markov chains. The key idea here is that while a
coding scheme based on a single nested binning would
treat side informations as Yi and cannot utilize the
Markov dependence within Zi and Wi variables in the
encoding stage, binned CMS would generate a codebook
for every combination of side informations Wi and Zi and
bin them accordingly, and hence fully utilize this overall
(i.e., in Y ) non-Markovian dependence, in contrast with
nested binning a common codebook which is proven to
be sufficient for Markov side information settings.

• We show that in the MSR problem, binned CMS achieves
points outside the achievable region reported in [12]. This
result is due to the subset common codewords in the CMS
codebook structure, paralleling the improvements in the
L > 2 channel MDC problem, as discussed in [7], [8],
[10].

II. PRELIMINARIES

A. Notation

Let {Xt}∞t=1, Xt ∈ X , be a discrete memoryless
source (DMS) with generic distribution P (X). The vector
[X(1), X(2), ..., X(n)] is compactly denoted by xn. Let Z
denote the reproduction alphabet. We employ H(X) to denote
the entropy of a discrete random variable X , or differential
entropy if X is continuous. For an arbitrary set A, we use 2A

to denote the set of all subsets of A, i.e.,

2A , {S : S ⊆ A}.

Assume a single-letter, bounded, and additive distortion mea-
sure d : X × Z −→ [0,∞), i.e.,

d(xn, zn) =
1

n

n∑
t=1

d(xt, zt) . (1)

A scalable block code pair (f1, f2, g1, g2) consists of an
encoding function

f1 : Xn −→M1

f2 : Xn −→M2

and decoders

g1 : M1 × Y n
1 −→ Zn

g2 : M1 ×M2 × Y n
2 −→ Zn .

A quadruple (R1, R2, D1, D2) is called achievable if for every
δ > 0 and sufficiently large n, there exists a block code
(f1, f2, g1, g2) such that

1

n
log |M1| ≤ R1 + δ

1

n
log |M1||M2| ≤ R1 +R2 + δ

E{d(Xn, g1(f1(Xn), Y n
1 ))} ≤ D1 + δ

E{d(Xn, g2(f1(Xn), f2(Xn), Y n
2 ))} ≤ D2 + δ .

We omit similar formal definitions of the coding system for
the MSR problem to avoid repetition, see e.g., [12].

B. Prior Work on Scalable Coding with Decoder Side Infor-
mation

Steinberg and Merhav studied the case of degraded side
information in the order of X−Y2−Y1. The encoding scheme
is intuitive: generate a codebook C1 with marginal distribution
of U1 and then conditionally generate a codebook C2 for each
codeword un1 with the conditional density P (U2|Un

1 = un1 ).
Next, bin C1 so that the codeword un1 can be decoded with
the help of side information Y1. Next, bin all the conditional
codebooks C2 so that the codewords un1 and un2 can both
be decoded at the decoder with the help of the better side
information Y2. We reproduce the following rate-distortion
region achievable by this scheme.

Theorem 1 ([1]). An achievable region for this setting,
RDSRWZ is the convex hull of quadruples (R1, R2, D1, D2)
for

R1 ≥ I(X;U1|Y1)

R1 +R2 ≥ I(X;U2|U1, Y2) + I(X;U1|Y1)

for a conditional distribution P (U1, U2|X) and deterministic
decoding functions g1, g2 which satisfy

Di ≥ E{di(X, gi(Ui, Yi))} i = 1, 2

and the Markov chain (U1, U2)−X − Y2 − Y1.

Tian and Diggavi studied the dual of this problem in the
sense that X−Y1−Y2 forms a Markov chain. The key coding
method here is the nested binning of a common codebook,
say C0 generated with the marginal distribution of U0 whose
codewords, un0 , are placed into two kinds of bins: coarse and
fine. There are many coarse bins in a codebook, many (and
nearly the same number of) fine bins in each coarse bin, and
many (and approximately the same number) codewords in
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Fig. 3. The overview of the encoding scheme in [6], also used in problem 1.

each fine bin. Instead of directly sending the codeword index,
the encoder sends the index of coarse bin which contains the
codeword to the base decoder. Upon receiving the index of the
coarse bin, the base decoder picks the codeword from coarse
bin that is jointly typical with side information sequence yn1 .
The refinement decoder, which has a weaker side information
sequence due to Markov chain X − Y1 − Y2, cannot find a
unique un0 in the coarse bin. Hence, the encoder sends the
index of the fine bin within the coarse bin which contains
un0 as the refinement layer. The codeword un0 is decoded by
finding the unique codeword in the fine bin which is jointly
typical with yn2 . Depending on the distortion requirements,
the encoder also sends an additional codeword from C1 or
C2 conditionally generated for each un0 with the conditional
density P (Ui|Un

0 = un0 ) for i = 1, 2 depending on whether
D1 ≶ D2, to be binned with respect to side information of
and decoded only at one of the decoders.

We note that nested binning a common codebook, as de-
scribed above, achieves the entire rate-distortion region for
Gaussian-MSE setting not only for the two-decoder setting,
but for any number of decoders as shown in [5]. The R-D
region for two decoder case is reproduced in the following
theorem.

Theorem 2 ([5]). An achievable region for this setting,
RDSISC is the convex hull of quadruples (R1, R2, D1, D2)
for

R1 ≥ I(X;U0, U1|Y1)

R1 +R2 ≥ I(X;U0, U2|Y2) + I(X;U1|Y1, U0)

for a conditional distribution P (U0, U1, U2|X) and determin-
istic decoding functions g1, g2 which satisfy

Di ≥ E{di(X, gi(Ui, Yi))} i = 1, 2

and the Markov chain (U0, U1, U2)−X − Y1 − Y2.

In [6], we introduced a coding strategy for both of the
aforementioned problems, solely based on binning as follows.
The encoder generates a codebook for each combination of
side informations, as shown in Figure 3, which corresponds
to three codebooks C0, C1, C2 with marginal distributions of

auxiliary random variables U0, U1 and U2 independently. The
encoding is done as follows: Given a source-word xn, the
encoder find codewords un0 , u

n
1 , u

n
2 that are jointly typical

with xn. To guarantee the existence of such jointly typical
codewords, there is a set of conditions on coding rates from
mutual covering lemma [13]. The codeword from C0, i.e.,
un0 is decoded with both yn1 and yn2 , while un1 and un2
is be decoded with yn1 and yn2 . All codebooks are binned
so that at each decoder, given the bin indices, the decoder
can find a unique codeword tuple jointly typical with their
respective side informations in each bins. This dictates another
set of conditions that involve binning and codebook rates.
Application of Fourier-Moltzkin elimination over these set of
equations, in conjunction with rate transfer arguments [14]
yields rate distortion regions identical those of the prior work,
as shown in [6].

Theorem 3 ([6]). Both RDSISC and RDSRWZ can be
obtained via binned CMS encoding.

Remark 1. In [6], the region obtained by binned CMS is
reported to be possibly larger due to the weaker Markov chain
conditions. At the time of publication, we had left open the
question of strict improvement, due to this weaker Markov
chain conditions. In fact, we can now show that this potential
degree of freedom in Markov chains does not provide any
improvement in the R-D region. We defer this discussion to the
extended version of this paper [15] due to space constraints.

C. Prior work on two descriptions problem

The first two descriptions coding scheme was proposed in
the seminal paper by El Gamal and Cover [16], where the
encoder generates two random codebooks according to P (U1)
and P (U2). On observing a typical sourceword xn, the encoder
finds one codeword from each codebook that are jointly typical
with xn. The encoder has to generate sufficient number of
codewords to guarantee that it can find a jointly typical of the
codewords un1 , un2 with the source-word xn, as well as it has
to guarantee that un1 and un2 are jointly typical.

The EGC Region region, denoted by REGC , is the convex
closure of all rate-distortion tuples satisfying:

DA ≥ E{d(X, gA(U2A1
))}, A = {1, 2, 12}

Ri ≥ I(X;Ui), i = 1, 2

R1 +R2 ≥ I(X;U1, U2) + I(U1, U2)

over P (X,U1, U2). We note that the original region in [16]
includes a refinement layer codeword, and does not involve
the decoding functions gA(·) as above (although a precursor
does, see e.g., [17]), however as demonstrated in [18] the
refinement layer can be removed for this setting without any
performance degradation, and we use the decoding functions
gA(·) (which do not improve the rate region for this problem)
to be consistent with other regions throughout the paper.

Zhang and Berger [17] considered the addition of a common
codeword which is sent in both of the descriptions within the
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EGC coding scheme. The ZB Region, denoted by RZB , is
the convex closure of all rate-distortion tuples satisfying

DA ≥E{d(X, gA(U2A1
))}, A = {1, 2, 12}

Ri ≥I(X;U12, Ui) i = 1, 2

R1 +R2 ≥2I(X;U12) + I(X;U1, U2|U12) + I(U1;U2|U12)

over P (X,U1, U2, U12). Clearly, RZB subsumes REGC by
construction, hence the critical question is whether RZB

includes points outside REGC . Zhang and Berger showed
that for binary symmetric source (BSS) under the Hamming
distortion measure, the answer is affirmative, as reproduced in
the following corollary.

Corollary 1 ([17]). REGC ⊂ RZB . Particularly, for a BSS
under Hamming distortion, the rate-distortion vector RD∗ ,
[R1, R2, D1, D2, D12] = [0.629, 0.629, 0.11, 0.11, 0] ∈ RZB ,
but RD∗ /∈ REGC .

III. RESULT-I: SCALABLE CODING WITH NON-MARKOV
SIDE INFORMATION

In this section, we consider the problem of scalable coding
with decoder side information as shown in Figure 1. Here, we
note that when X,Y1, Y2 are jointly Gaussian (not necessarily
Markov), there exists a jointly Gaussian X,Y ′1 , Y

′
2 triple with

P (XY ′1) = P (XY1) and P (XY ′2) = P (XY2) that forms a
Markov chain in the order of X−Y ′1−Y ′2 or X−Y ′2−Y ′1 . Since
all the relevant rate and distortion expressions only depend
on the pairwise marginals P (XY1) and P (XY2), but not
P (X,Y1, Y2), one can equivalently consider X,Y ′1 , Y

′
2 instead

of X,Y1, Y2 in the problem formulation. However, this special
consideration is unique to jointly Gaussian variables e.g., for
binary variables the same stochastic degradedness argument
does not hold. Motivated by the fact that most practical sources
are indeed non-Markov processes, but involve Markov compo-
nents, e.g., a hidden Markov processes is not Markov in itself
but involves an underlying Markov component, we consider
stochastic processes that are composed of Markov components
but overall themselves are not Markov. Particularly, we take
Yi = [Zi,Wi] for i = 1, 2 where X−Z1−Z2 and X−W2−W1

to show that nested binning a single common codebook is not
sufficient for optimality as follows.

The encoder will generate a codebook C0, whose codeword
un0 is decoded at both decoders, with the help of Zi,Wi at
decoder i for i = 1, 2 via nested binning. Since it cannot
utilize Wi and Zi individually, let us assume that it generates
the C1 and C2 codebooks conditioned on un0 so that un1 can
be decoded with wn

1 , z
n
1 at the base decoder and un2 can be

decoded with wn
2 , z

n
2 at the refinement decoder. This requires

that any un1 codeword to be also jointly typical with the
associated wn

1 and similarly un2 to be also jointly typical with
zn2 to be decodable at their respective decoders. Due to Markov
chains, X−Z1−Z2 and X−W2−W1 these codewords can also
be decoded at both decoders, and hence they are actually part
of un0 . Hence, the benchmark encoder will not bin the index
of the C1 and C2 with respect to any side information. With
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Fig. 4. Benchmark coding strategy (left) and binned CMS (right) for problem
1.

these observations at hand, we present the following region
for the benchmark encoder.

Theorem 4. An achievable region via this coding scheme
for this problem, RDNM is the convex hull of rate-distortion
vectors (R1, R2, D1, D2, D3) for

R1 ≥ I(X;U0|W1, Z1) + I(X;U1|U0)

R1 +R2 ≥ I(X;U0|W2, Z2) + I(X;U1|U0) + I(X;U2|U0)

for a conditional distribution P (U0, U1, U2|X) and determin-
istic decoding functions g1, g2 which satisfy

Di ≥ E{di(X, gi(Ui,Wi, Zi))} i = 1, 2

Proof. We provide a sketch of the proof here, and defer the
details to the full paper [15]. The encoder generates a common
codebook C0 with the marginal distribution of U0 (with the
assumption of I(U0;W1, Z1) ≥ I(U0;W2, Z2)). The common
codeword, un0 is decoded at both decoders via nested binning.
The un1 and un2 are decoded only at their respective decoders as
refinement, without using any side information which results
in the region above.

Here, the proposed binned CMS coding scheme generates
and bins a codebook for each combination of side informa-
tions. For the example scenario, this implies that there exists a
common codeword un0 to be decoded at both decoders, another
codeword un1 to to be decoded with the help of zn1 , and another
one un2 only to be decoded at the second decoder with wn

2 . This
way, the encoder can fully utilize the Markov dependencies as
done in degraded side information scenarios described earlier.
The coding methods are depicted on Figure 4. The achievable
region by this encoding scheme is the following.

Theorem 5. An achievable region RD∗NM is the convex hull
of rate-distortion vectors (R1, R2, D1, D2, D3) for

R1 ≥ I(X;U0|W1, Z1)+I(X;U1|U0, Z1)

R1 +R2 ≥ I(X;U0|W2, Z2) + I(X;U1|U0)+I(X;U2|U0,W2)

for a conditional distribution P (U0, U1, U2|X) and determin-
istic decoding functions g1, g2 which satisfy

Di ≥ E{di(X, gi(Ui,Wi, Zi))} i = 1, 2
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Proof. We again provide a sketch of the proof here, and defer
the details to [15]. The encoder generates a common codebook
C0 in an identical manner to the encoding scheme of RDNM .
However, here un1 and un2 are decoded with the help of zn1 and
wn

2 at the base and refinement decoders respectively since the
encoder can generates a codebook for each combination of side
informations. The coding and binning rates are determined via
mutual civering and decoding conditions, as done in [6], and
via standard manipulations and rate transfer arguments yield
RD∗NM .

Corollary 2. RDNM ⊂ RD∗NM .

Proof. We note that distortion and rate expressions are
identical for both regions except four terms which yield:
I(X;U1|U0) − I(X;U1|U0, Z1) = I(U1;Z1|U0) ≥ 0 and
I(X;U2|U0)− I(X;U2|U0,W2) = I(W2;U2|U0) ≥ 0, hence
for the same D1 and D2 values, RD∗NM achieves lower rates
than those of RDNM .

IV. RESULT-II: AN IMPROVED R-D REGION FOR
MULTIUSER SUCCESSIVE REFINEMENT

In [12], the following R-D region, denoted here as RDMSR

is obtained for the MSR problem, using a coding scheme
inspired by the EGC two description coding.

Theorem 6 ([12]). An achievable region for the MSR,
RDMSR is the convex hull of rate-distortion vectors
(R1, R2, R3, R4, D1, D2, D3, D4) for

R1 ≥ I(X;U1),

2∑
i=1

Ri ≥ I(X;UA2),
∑
i=1,3

Ri ≥ I(X;UA3),

3∑
i=1

Ri ≥ I(X;UA3
, U2) + I(U2;U3|U1)

4∑
i=1

Ri ≥ I(X;UA4) + I(U2;U3|U1)

for a conditional distribution P (U1, U2, U3, U4|X) and deter-
ministic decoding functions gi which satisfy

Di ≥ E{di(X, gi(UAi
))} i = 1, 2, 3, 4

where A1 = {1}, A2 = {1, 2}, A3 = {1, 3}, and A4 =
{1, 2, 3, 4}.

In the following theorem, we present the region achievable
via the binned CMS coding, denoted as RD∗MSR.

Theorem 7. An achievable region for the MSR prob-
lem, RD∗MSR is the convex hull of rate-distortion vectors

(R1, R2, R3, R4, D1, D2, D3, D4) for

R1 ≥ I(X;U1)

2∑
i=1

Ri ≥ I(X;UA2),
∑
i=1,3

Ri ≥ I(X;UA3)

3∑
i=1

Ri ≥ I(X;UA3
, U2) + I(U2;U3|U1, U12)

4∑
i=1

Ri ≥ I(X;UA4
) + I(U2;U3|U1, U12)

for a conditional distribution P (UA4
|X) and deterministic

decoding functions gi which satisfy

Di ≥ E{di(X, gi(UAi
))} i = 1, 2, 3, 4

where A1 = {1}, A2 = {1, 2, {12}}, A3 = {1, {12}, 3}, and
A4 = {1, 2, {12}, 3, 4}.
Proof. The coding scheme works very similar to the coding
scheme in [6]. The encoder independently generates code-
books C0, C1, C12, C2, C3, C4 with the marginal distributions
of auxiliary random variables U0, U1, U2, U12, U3, U4 respec-
tively. The codebooks sizes are selected so that the encoder
can find a jointly typical codeword tuple un0 , . . . , u

n
4 with the

source-word xn (see, e.g., mutual covering lemma [13]). Then,
these codebooks are binned where the bin sizes are selected
to guarantee that there is a unique codeword tuple jointly
typical with the respective side informations at every decoder.
The remaining part of the derivation, as in [6], follows from
standard manipulations and rate transfer arguments (see e.g.
[14]) whose details can be found in [15].

We next present our main result for this setup.

Corollary 3. RDMSR ⊂ RD∗MSR.

Proof. Here, we first note that RDMSR ⊆ RD∗MSR since by
simply setting U12 = Φ in RD∗MSR, where Φ is deterministic,
we obtain RDMSR. Strict improvement, i.e., the fact that
inclusion of U12 is not redundant can be shown via setting
R1 = R4 = 0 in the problem formulation, which transforms
the problem into a two description coding setting. Then,
RD∗MSR simplifies to RDZB due to the common codeword
U12, while RDMSR simplifies to RDEGC . Due to Theorem
1, we obtain the strict improvement, i.e., for a BSS with Ham-
ming distortion, RD∗∗ , [R1, R2, R3, R4, D1, D2, D3, D4] =
[0, 0.629, 0.629, 0, 0.5, 0.11, 0.11, 0] ∈ RD∗MSR but RD∗∗ /∈
RDMSR.

V. DISCUSSIONS

In this paper, we have presented new results on networked
scalable coding problems using the coding method in [6]. We
have first shown that nested binning may not be sufficient for
optimality in the case of scalable coding with non-Markov side
information. We have then obtained a new achievable region
for the MSR problem which strictly subsumes that of [12].
Details of the proofs can be found in the expanded version of
our paper [15].
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