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Abstract—This paper proposes an effective mechanism for
stochastic codebook generation for lossy coding, using source
examples. Earlier work has shown that the rate-distortion bound
can be asymptotically achieved by a ‘“natural type selection”
(NTS) mechanism which iteratively considers asymptotically long
source strings (from given distribution P) and regenerates the
codebook according to the type of the first codeword to “d-
match” the source string (i.e., satisfy the distortion constraint),
where the sequence of codebook generating types converges to
the optimal reproduction distribution. While ensuring optimality,
earlier results had a significant practical flaw, due to the order
of limits at which the convergence is achieved. More specifically,
NTS iterations indexed by n presume asymptotically large ¢, but
the codebook size grows exponentially with ¢. The reversed order
of limits is practically preferred, wherein most codebook regen-
eration iterations involve manageable string lengths. This work
describes a dramatically more efficient mechanism to achieve the
optimum within a practical framework. It is specifically shown
that it is sufficient to individually encode many source strings of
short fixed length /7, then find the maximum likelihood estimate
for the distribution ,,+1 that would have generated the observed
sequence of d-matching codeword strings, then use Q.1 to
generate a new codebook for the next iteration. The sequence of
distributions ()1, Q2,... converges to the optimal reproduction
distribution Q; (P, d), achievable at finite length /. It is further
shown that Q7 (P,d) converges to the optimal reproduction
distribution Q*(P,d) that achieves the rate-distortion bound
R(P,d), asymptotically in string length /.

I. INTRODUCTION

Stochastic mechanisms for codebook generation and adap-
tation, based on source string matching, have appeared in both
the lossless and the lossy coding literature. They had a major
impact on lossless coding, where the seminal contributions
of Lempel and Ziv [1]-[3] had considerable theoretical and
practical implications. For example in LZ78 [3], the oper-
ating codebook is a tree that is grown, on-the-fly, based
on observation of source strings, such that asymptotically
its codewords consist (mostly) of typical source sequences.
Asymptotic optimality is thus achieved for ergodic sources
without prior knowledge of the source statistics.

Stochastic mechanisms for codebook generation have also
been proposed for lossy coding, including for example gold-
washing [4] and natural type selection [5], [6]. However, it
is important to emphasize that the lossy coding case is fun-
damentally more challenging. Note that the optimal codebook
generating distribution in lossless coding is simply the source
distribution, so the stochastic mechanism’s essential objective
is to learn this distribution from observation of source strings.
However, in lossy coding, the optimal codebook generating,

or reproduction distribution @Q* differs from the source distri-
bution P, as it depends on the distortion constraint d. This
represents a non-trivial learning challenge, especially in the
non-high resolution regime, where Q* deviates significantly
from P [5], [7]-[9]. For example, in the case of continuous
alphabet sources with the squared error distortion measure, at
small distortion (high resolution) Q* ~ P, but as the distortion
constraint is relaxed, i.e., d increases, Q* increasingly differs
from P, it shrinks, often becomes discrete, and eventually
collapses on a single point when d = dpax [10].

Most relevant to this paper is the stochastic mechanism
proposed in [5] for codebook generation in lossy coding of
discrete sources. At each iteration indexed by n, and given a
sufficiently large string length ¢, the source string will favor
codewords of type (,,+1 through a distortion match event.
The favored codeword type, which is naturally selected by
the source, is then used to regenerate the random codebook
in the next iteration. It was shown that, asymptotically, the
sequence of codebook generating types 1, (2, ... converges
to the optimal reproduction distribution Q*(P, d) that achieves
the minimum possible coding rate R(P,d). The motivation
for this work comes from the observation that this “natural
type selection” (NTS) codebook generating algorithm suffers
from a significant practical flaw due to the order of the limits
required. To ensure convergence to the rate-distortion function
we must first have asymptotically long strings ({ — ©0),
and only then iteratively regenerate the codebook (n — o0).
Performing such iterations with very long strings implies
intractable d-match search complexity, as the codebook size
grows exponentially with string length. Thus, as it stands, NTS
is not easily amenable to practical implementations such as
those that resulted in the phenomenal impact of the Lempel-
Ziv algorithms for lossless coding.

This paper proposes an effective mechanism for on-the-fly
stochastic generation of codebook. It builds on the principles
of the original NTS approach, but delivers optimality within a
practically implementable algorithm. In Theorem 1 and Theo-
rem 2, the proposed codebook generating algorithm is shown
to find the rate-distortion optimal reproduction distribution.
It is specifically shown that for a fixed string length /, the
codebook reproduction distribution converges to the optimum
achievable distribution Q7 (P,d), from a set of distributions
defined by ¢. Additionally, Q}(P,d) can be made as close as
needed to Q*(P, d) by the sending the string length to infinity.
This implies that convergence to the optimal distribution is
achieved by the reversed order of the limits, when compared



to the original NTS algorithm in [5]. Consequently, by im-
plementing codebook regeneration iterations at a manageable
string length, a dramatic decrease in d-match search complex-
ity is accomplished, which is exponential in the string length
and ultimately determines the complexity of the NTS iteration.

The remainder of this paper is organized as follows: Section
II provides some relevant background, Section III summarizes
the original NTS algorithm, Section IV introduces the pro-
posed effective and practical mechanism of codebook genera-
tion that captures the benefits of NTS at dramatically reduced
complexity, by leveraging a maximum likelihood estimation
framework. Asymptotic convergence to the rate-distortion
bound achieving distribution is established in Section IV, and
conclusions are drawn in Section V.

II. RELEVANT BACKGROUND

Recall the structure of a random codebook for lossless
or lossy coding. Let x;, X2, ... be a sequence of source
strings/vectors of length ¢, where the source is discrete, mem-
oryless and drawn from distribution P = {P(z),z € X'} over
the input alphabet X'. By Shannon’s lossless coding theorem, if
we generate an independent and identically distributed (i.i.d.)
codebook of exp (¢(H(P) + ¢€)) codeword strings from the
source distribution P, then the probability of finding in the
codebook another, independently generated source string goes
to one as ¢ goes to oo, where H(P) is the source entropy:

— Y P(x)log (P(x)). )
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Throughout the paper, the logarithm function is taken to the
base e. In the lossy coding case, we define a distortion function
p: X xY —[0,00), where ) is the output or reproduction
discrete alphabet. The distortion seen between vectors x and
y is given by,
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Next, define a “d-match” event as the event that p(x,y) < d
is satisfied. Shannon’s lossy coding theorem specifies that if
we generate an i.i.d. codebook of length exp (¢(R(P,d) + ¢€))
from optimal distribution Q*(P,d), then the probability of
finding a d-match to an independently generated source string
of length ¢ goes to one as ¢ goes to oo [11], wherein R(P,d)
is the rate-distortion function and Q*(P,d) is the optimal
reproduction distribution, i.e.,

R(P,d) = W:p(rg,i‘r}v)édl(P, W), d>0, 3)
=Y > P@W(yl)p(x,y), )
TEX yeY
W (ylz)
Z ZP W (y|z) log ~- O
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Here, I(P,W) denotes the mutual information in terms
of source distribution P and the transition (conditional)
distribution W = {W(ylz):y € Y,z € X}. Let W* =

W*(P,d) be the minimizing transition distribution in (3), i.e.
( d) = I(P,W*). The optimal reproduction distribution
Q* (P, ) is obtained by marginalizing the joint distribution

{P(x)W*(ylz)}, ie.,
“(ylw) } (6)

Q*(P.d) =[P {ZP
reX
where P o W* denotes the joint distribution, and [P o W*],
is the y-marginal of the joint distribution, while [P o W*],
is the z-marginal of the joint distribution. Next, suppose that
a different reproduction distribution @ # Q* (P, d) is used to
generate the random codebook. In that case, the minimum
coding rate, denoted as R(P,Q,d), which is required to
guarantee a d-match event as ¢ goes to oo is given by [12],

R(P,Q, d)=nin{lm(P]| Q' d) + D(Q'|Q)} > R(P,d), (7)

where D(-||-) denotes the Kullback Leibler (KL) divergence
function, and I,,,(P||Q, d) is the minimum mutual information
with constrained reproduction distribution @, i.e.,

Im(P||Q7d):
i I(P,W) if P,Q.d)i t
{Wevr&%w) (P,W) if W(P,Q,d) is non empty  (8)

9

00 otherwise

W(P,Q,d) = {W [PoW], =Q,p(P,W) < d}. )

III. NATURAL TYPE SELECTION

Let us define Q*(P, @, d) as the reproduction distribution
that achieves R(P,Q,d), i.e

Furthermore, let N, denote the index of the first codeword in
the codebook that d-matches a source vector x:

p(x,yi) >d, for 1 <i < Ny—1, and p(x,yn,) < d, (11)

where y; is the i-th codeword in the codebook generated
from distribution @ = {Q(y) : y € Y}. Theorem 4 of [5]
shows that the empirical type of the first d-matching codeword
Qn,(P,Q,d) converges in probability to Q* (P, @, d) asymp-
totically as £ — oo. Note that Q*(P, @, d) is more efficient in
coding the source than (), the codebook generating distribu-
tion, however Q* (P, @, d), is not as efficient as Q* (P, d). This
intuitively gives rise to the recursive algorithm in [5]. Starting
with an arbitrary strictly positive initial codebook generating
distribution Qg ¢, the type of the first codeword to d-match
a source string is used to generate a new codebook. In other
words, the next iteration’s codebook reproduction distribution
is naturally selected by the source through a d-match event,
hence the name “natural type selection” algorithm. This recur-
sion results in a sequence of reproduction distributions,

Qn,e = QN@ (Pa Qn—l,ea d)
Qn = lim Qn,@ = Q*(Pa Qn—la d):
£— 00

12)

n=1,2,... (13)



Moreover, Theorem 5 of [5], states that the recursion in
(13) asymptotically achieves the optimal reproduction distri-
bution @Q* (P, d), and the corresponding rate achieves the rate-
distortion bound, i.e.,

Q*(P,d) = lim lim Q,, (14)
n—oo f—oo
R(P,d) = lim lim R(P,Qn.,d). (15)

n— 00 f—00

The above result, while ensuring optimality, still has a signifi-
cant practical flaw due to its order of limits. The convergence
as n — oo presumes that ¢ is already very large. In other
words, the limit in ¢ is taken before the limit in n. In practice,
however, it is the reversed order of limits that “makes more
sense”. One would like to implement codebook regeneration
iterations at manageable string length. Ideally, one would like
to derive the asymptotic behavior for finite string lengths.
More significantly, it is noteworthy that the codebook size
grows exponentially with the string length ¢. Equivalently, a d-
match event occurs with probability that decays exponentially
with /. This means that the d-match search complexity, which
is at the heart of the NTS iteration, explodes when ¢ increases.
This provides strong motivation for the proposed approach we
describe in the next section.

IV. PRACTICALLY EFFECTIVE AND ASYMPTOTICALLY
OPTIMAL NATURAL TYPE SELECTION

An interesting question to be answered is: can a more
effective algorithm be devised such that convergence to the
optimal reproduction distribution Q*(P,d) is achieved but
through a reversed order of limits? l.e., can we achieve
Q* (P, d) by first sending n to infinity for a finite ¢, and then
sending ¢ to infinity? Obviously, for finite ¢, the type of the
d-matching codeword is restricted in resolution to 1/, i.e., the
frequency of letters in the codeword is multiple of 1/¢. Such a
low resolution of types may cause difficulties for an iterative
algorithm that advances by potentially small adjustments to the
distribution. We circumvent this shortcoming by estimating the
general reproduction distribution that would have generated a
sequence of d-matching codeword strings. In other words, we
consider the maximum likelihood estimate of the distribution
given a set of K observed d-matching codeword strings.

Lemma 1: The Maximum Likelihood (ML) estimate of
the reproduction distribution, given a set of K d-matching
codewords, is the average of the d-matching codeword types,
ie.,

. 1 &
ek = Ve Z Qune(Yje)), (16)
i=1
where y ;) is the (-length codeword, of index j(i), that
achieves a d-match event to the i-th source string, and
Qn,e(¥j()) is its corresponding type.

The proof of Lemma 1 is given in Appendix A. This result
immediately suggests a modified and substantially more effec-
tive variant of the NTS recursive algorithm. Starting with an
arbitrary and strictly positive initial reproduction distribution
Qo,¢, the average type of the set of K d-matching codewords

is used to generate a new codebook. This recursion yields a
sequence of reproduction distributions, i.e.,

K
1
Qnex = 5 > Qno1.4(y), A7)
j=1
Qn,f = lim Qn,[.K7 n= 1723"' (18)
K—o0 '

In the following analysis, we establish that the sequence of
reproduction distributions of the modified NTS algorithm,
despite the fact that it maintains a fixed and finite string length
¢, converges asymptotically, in probability, as n — oo and
K — oo to the optimal achievable reproduction distribution
Q;(P,d), to be defined in Theorem 2. First, we start by
defining the set of all d-matching joint types for a fixed
sourceword or codeword string length ¢ as,

Ve(d) 2 {v V=P oW, P eP,
Q' =V, @ € Qup(P, W) < df,

where P, and Qp are the sets of all possible ¢-length string
types over the input alphabet X', and the output alphabet ),
respectively. Next, define the set Fy(P,d) as,

19)

Ey(P,d)2 {v LV €Conv(Ve(d)), [V]s = P}, (20)

where Conv(V,(d)) is the convex hull of all the joint types in
the set V(d). We can now state our first main result.

Theorem 1: The reproduction distribution of the modified
recursive NTS algorithm in (17) converges asymptotically as
K — o0, and for a fixed string length ¢ to the distribution
Q7 (P,Q,d) in probability, i.e.,

sz = lim Qn,Z,K = QZ(Pand)v Q = anl,é
K—oo

V=V (PQ,d £ in D(VI|P
] 7 (P,Q,d) arg | min, (VIIP xQ),

QZ(P7 Q, d) = [‘/E*(Pv Q, d)]y :

Proof: Let x; and y;(;), @ = 1,2,..., K, be a sequence of
d-matching /-length memory-less vectors that are generated
according to P and () over discrete alphabets X and ),
respectively. Let P; ; be the ¢-th instantaneous type of x;, Q; ¢
be the j-th instantaneous type of y;(;), and W; ¢ be the :-th
instantaneous channel, i.e.,

[Pie 0 Wi, = Qje,

p(P; e, Wie) <d, i=12,... K.
Let x and ¥ be the K/{-length vectors constructed
by concatenating {xi,...,Xx} vectors of length ¢, and

{¥;a)---,¥j(x)} vectors of length ¢, respectively. Addition-
ally, define Ex ¢(P,d) as,

2y

(22)

K
1
ExoPd)2{V:V=5 PuoWi P € P,
= (23)
N(z|x;
Q)0 €Q0, p(Pie, Wiy) <d,P;y(z)= %
where N (x]x;) is the number of occurrence of letter x € X in
the vector x;. Additionally, X ~ P indicates that the elements

X~P},



of the vectors x; are generated i.i.d. according to P. Note that
the type of the concatenated vectors X, and ¥ is equal to the
average of the set of types {P; ¢}, and {Q; }, respectively,
ie.,

1 & 1
P = E;P@f’ Qy = E;Qﬂ. (24)
By strong law of large numbers, Px almost surely converges

to the generating distribution P as K — oo. We will show
that for any § > 0, and sufficiently large K,

P(D(Qs]|Q: (P, Q,d)) > 30|Vx g € Exo(P,d)) <

(K0 + 1)2 X1V ke, ()

Thus, conditioning on the event that the joint type of (X,¥)
belongs to Ex (P, d), the type of ¥ is with high probability
close in the divergence-sense to QQ; (P, @, d). Since closeness
in divergence implies closeness in £; sense [11], this estab-
lishes Theorem 1. We start by verifying that, as K — oo,
and by (20) and (23), Ek (P, d) approaches E;(P,d), hence
define,

D* = Vegl(i(r})yd)D(VHP X Q). (26)
Then following [11],
P(D(Vzgl|P x Q) > D* +34,Vzy € Ex (P, d)) =
> P(T(V')), 27)

V'€EK (P, d) NPk X Qke:
D(V'||PxQ)>D"+35

where the probability of type class of V' is denoted by
P(T(V")). Then, by [11],

P(D(Vzz||P x Q) > D" +36,Vz3 € Ex (P, d)) <

> exp (—KD(V'|IP xQ)),  (28)
V'€EK o (P,d)NPreX Qrce:
DV'||PXQ)>D*+36
HD('D(V,—(,}—,HP X Q) > D* 4 35, V,—(,y S EK,[(P, d)) <
> exp (=K ¢ (D* + 30)), (29)
VIGEj(’g(P,d)m,PK[XQKZ:
D(V'||PxQ)>D*+38
P(D(V,—(’yHP X Q) > D* + 35, V,—cy S EK’K(P, d)) < (30)

(K0 + )%Vl exp (~ K0 (D* + 36)),

since there are only a polynomial number of joint types. Next,
we observe that,

P(D(Vzg||P x Q) < D*+2§,Vzy € Ex(P,d)) =

> P(T(V")), 31)
V/EEK,@(P,d)ﬁ’PszQKZ:
D(V'[|PxQ)<D*+25
P(D(Vzz||P x Q) < D* +20,Vz 3 € Ex (P, d)) >
—KI{D(V'||P
5 exp CKDVIPXQ)

(K€+1)|X\D’| ’
V'€EK,¢(P,d)NPxeX Qke:
DV'||PxQ)<D*+26

P(D(V,—(,ynp X Q) < D*+2(S, V,—cy € EK’g(P, d)) >
exp (—K{ (D* + 24))
(Ke+1)lxive -
since for sufficiently large K, there exists at least one term in

the summation, i.e., there exists one K¢ type V' in E ¢(P, d)
such that,

(33)

D(V'||P x Q) < D* + 2. (34)

Next, taking into account that the probability of one event is
larger than the probability of the intersection, we have,

exp (—K{ (D* + 26))

P(D(Vxy € Ex(P,d))) > L (35)
By Bayes’ law we get,
P(D(Vzg||P x Q) >D* 4+ 30|Vx 3 € Ex ¢(P,d)) <
(K0 + 1)2 X exp (—K¢6). (36)
By the “Pythagorean” theorem [11], we have,
D(VasllVi)+D(V/(IP x Q) < D(VagllP xQ),  (37)
Hence, D(Vz 3||P x Q) < D* + 36 implies that,
D(VayllVi') < 30. (38)
Finally, by the data processing inequality, we have,
D(Q5[|Q"(P,Q,d)) < D(Vz5|[V/) (39)

since, both are the respective y-marginals of the joint types.
Hence, Theorem 1 follows from (36) as desired.

Theorem 2: For a strictly positive initial distribution Qg ¢,
the recursion in (18) achieves,

Qn,é - Q?(Pv d),

R,(P,d) — R(P,d)
Qi (P,d) = Q*(P,d)
where Q*(P,d) is the optimum reproduction distribution that
achieves the rate distortion function R(P,d), and Q}(P,d)

is the optimum achievable reproduction distribution for finite
length ¢, that achieves Ry(P,d), i.e.,

R@(P,Q,d)é D(V||PXQ)7

asn— oo, 40)

as { — oo, 41)

min
VEE,(P,d)

Wy(P,d) = {W :PoW =V,V € E(P,d)},

W (P,d) = W; 2 in I(P,W),
/ (P,d) ¢ Sarg min d)( )

Ry(P,d) = ménRg(P, Q,d) = I(P,W;),

(42)

Qi(P.d) 2 [PoW;(P,d),.

Proof: It can be shown using Csiszar—Tusnady Theorem 3
of [13] for general alternating minimization procedures across
convex sets, that the convergences stated in (40) is guaranteed.
From (42), we have,

Ry(P,d) =min min

D(V||PxQ).
dn | min, DVIIPxQ)

(43)

It is straight forward to verify that the sets of joint distributions
{P x @ :any Q}, and FE;(P,d) are convex sets. Furthermore,



it should be noted that for a fixed V, the reproduction
distribution which minimizes D(V||P x Q) is the y-marginal
of V. On the other hand, for a fixed () and distortion constraint
d, the joint distribution which minimizes D(V||P x Q) over
Ey(P,d) will induce Qj(P,Q,d). Hence, by the result of
Theorem 1, the recursion in (18), achieves a sequence of
alternating minimization across convex sets, i.e.,

Vi (P, Qo,d) = (P x Qi (P, Qo d)) —

‘/Z*(P7Q1,£7d) — (P X Q;(P7Q1,Zvd)) e

It should be noted that the distance in the alternating mini-
mization of (44) is measured by divergence. Hence, by [13],
the sequences of divergences and distributions will converge to
the minimum divergence, i.e., R;(P, d), and the corresponding
optimum reproduction distribution @} (P, d). Next, to show
the second part of Theorem 2 stated in (41), first verify
that the minimum coding rate with constrained reproduction
distribution, R(P, @, d), can be rewritten as [5],

(44)

P .Q.,d) = i I(P. D(|P 4
R(P,Q,d) L (P,W)+D([PoW],[|Q), (45)
R(P,Q,d) = womn P (PoWI[PxQ),  (46)
Hence, R(P,d) follows from (46) as,
R(P,d)=min _ min  D(PoW]||P x Q). 47)

Q W:p(P,W)<d
Now, as ¢ — oo, it is straight forward to show that,
Ey(P,d) = {V: V=P oW' P'=P p(P W) <d}. (48)
Consequently, as ¢ — oo, and from (42), (43), and (47),

Re(P.Q.d)- min D(PoW||PxQ)=R(P,Q.d), (49)
Ry(P,d) — R(P,d). (50)

Thus by the definition of Q} (P, d) in (42), the second part of
Theorem 2 follows.

V. CONCLUSION

This paper proposes a modified and more effective NTS
approach for a stochastic generation of random codebook in
the lossy coding settings. Unlike the original NTS approach
in [5], the codebook generating distribution at each iteration
is not restricted in resolution to the type of the d-matching
codeword. Instead, an ML estimation framework is leveraged
to identify the most likely distribution that would have gener-
ated a set of d-matching codewords. It was further shown by
Theorem 1 and Theorem 2, that the proposed codebook gen-
erating distribution, that emerges from the proposed stochastic
algorithm, converges to the optimal codebook reproduction
distribution asymptotically as K — oo, n — co, and ¢ — 0.
A significant improvement is achieved in comparison with
the original NTS algorithm by reversing the order of limits
required to achieve convergence. This consequently reduces
dramatically the complexity of finding a d-match in the
codebook, which is the central operation of the NTS algorithm.
Hence, the modified NTS approach is rendered significantly
more appealing to practical applications.

APPENDIX A
MAXIMUM LIKELIHOOD ESTIMATION OF CODEBOOK
REPRODUCTION DISTRIBUTION
Let C = {y;(1):¥j(2),---»¥j(x)} be the set of (-length
memoryless d-matching codewords to the input source exam-
ples x1,Xa,...,Xk, generated by Q,, ¢, x (y) over y € Y (with
n being the NTS iteration index), i.e.,

P(Xi,¥j@)) < d, ie{l,2,...,
The ML estimator of the codebook generating distribution

Qn+1,0,x Would maximize the joint probability of generating
the codewords in C, and hence can be written as,

K}, (D

Qny1,0,x = arg gg}gip(yjupyj(z), . ,yj(K)\Q% (52)
where Q is the set of valid distributions, i.e.,
{QzZQ(y)l}- (53)
yey

The likelihood function shown in (52) depends on the code-
words y;;),1 < i < K only through the codewords’ types.
Let Qn ¢(y;(i)) be the type of the d-matching codeword y ;).
Then, the ML formulation in (52) can be written as,

Qn1,0,x =arg gggP(Qn,é(Yj(l))7 e Que(¥(r)|Q)- (54)

Taking independence between codewords into consideration,
we get [11],

Quitk = argrQnaxHP Que(y;m)lQ), (55
€Q
K
Qn+1,0, Kk =argmax
QeQil;[l (56)

exp {—5 (H (Qne(yjw)) +D (QH,Z(YJ‘(Z’))HQ>) },

Qnt1,0,x =argmax
QeQ

eXp{ ‘ Z (H (@neyi))+D (Qn,e<yj<i>>||@))}’ .

where H (ng(yj(i))) denotes the entropy calculated over
Qn,e(¥;i))- The log, (-) function is monotonically increasing,
and the entropy term H(Q,,¢(y;(;))) doesn’t depend on @,
hence the expression in (57) simplifies to,
K
Qn1,0,x = arg min Z (D (Qn,e()’j(z‘))HQ)) (58)
QeQi o

In summary, the ML estimate of the codebook reproduction
distribution is the one that minimizes the sum of KL diver-

gences towards the types of the d-matching codewords. Then,
it is straight forward to show from (58) that,

K
1
Qnirek = 2 Zl Qn.e(Y(0)- (59)
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