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Abstract—This paper considers a layered coding framework
with a relaxed hierarchical structure, tailored to serve content
at multiple quality levels, where a key challenge is the conflict
between coding optimality at each layer and efficient use of storage
and networking resources. The prevalent approach of storing and
transmitting independent copies for each quality level, is highly
wasteful in resources. The alternative of conventional scalable cod-
ing incurs the notorious “scalability penalty” at the enhancement
layers, due to its rigid structure. The approaches pursued in this
work involve a layered coding framework, wherein information
common to one or more subsets of the quality levels is first ex-
tracted and transmitted, and then complemented by individual
(quality level specific) bit streams. This framework ensures that
no redundant or irrelevant information is sent to any decoder,
enables achieving all intermediate operating points between the
two extremes of conventional scalable coding versus independent
coding, and hence mitigates the layered coding penalty. Joint design
of common and individual layers ensures that all extracted common
information is fully usable by the target decoders, as needed to
approach optimality. Simulation results for practically important
sources, confirm the superiority of the proposed framework.

Index Terms—Common information, rate-distortion theory,
layered and scalable coding, video and audio compression.

I. INTRODUCTION

T ECHNOLOGICAL advances ranging from multigigabit
high-speed Internet to wireless communication and mo-

bile, limited resource receivers, have created an extremely het-
erogeneous network scenario with data consumption devices of
highly diverse decoding and display capabilities, all accessing
the same content over networks of time varying bandwidth and
latency. The primary challenge is to maintain optimal signal
quality for a wide variety of users, while ensuring efficient use
of resources for storage and transmission across the network.
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The simplest (and common) solution is to store and transmit
independent copies of the signal for every type of user the
provider serves. This solution is highly wasteful in network
resources. The main alternative, namely, conventional scalable
coding [1], [2], generates layered bit-streams, with a base layer
offering coarse quality reconstruction and successive enhance-
ment layers to refine the quality. Depending on the network and
user constraints, a suitable number of layers are received and
decoded, yielding a prescribed quality level. However, there is
a well documented inherent loss due to scalable coding, which
incurs higher distortion than independent (non-scalable) coding
at the same overall received rate [3]–[5], as most sources are not
successively refinable at finite delay under common distortion
measures. Moreover, at fixed receive rates (over the last link
to user devices), non-scalable coding and conventional scalable
coding require the highest and lowest total transmit (or storage)
rate, respectively. Thus, non-scalable coding and conventional
scalable coding represent two extreme points in terms of the
tradeoff between total transmit rate and decoder distortion, for
prescribed receive rates.

Recent work (from our lab) proposed a novel layered cod-
ing paradigm for multiple quality levels [6], inspired by the
information-theoretic concept of common information of corre-
lated random variables [7]–[9], wherein only a subset of the in-
formation needed to reconstruct at a lower quality level is shared
with the higher quality level receiver. This flexibility enables
efficient extraction of common information between quality
levels and achieves intermediate operating points in the tradeoff
between total transmit rate and decoder distortion, in effect con-
trolling the layered coding penalty. The information-theoretic
foundation of the framework was established in [6], [9], and
preliminary implementation with a standard audio codec [10]
demonstrated its potential gains. This paper focuses on the
important problem of quantizer design for this layered coding
framework.

We first consider the simple setting of two quality levels with
fixed receive rates. This setting requires the design of three quan-
tizers: one for the common layer, whose output is sent to both
decoders, and two level-specific quantizers to refine the common
layer information for the respective quality levels, each sent
solely to the respective decoder. First, joint design of quantizers
across all layers is proposed for this setting. Specifically, an
iterative approach is developed for designing the three quantiz-
ers, wherein at each iteration step one quantizer is updated to
minimize the overall cost function while the others are fixed,
and the iterations are performed repeatedly over all quantizers
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until convergence. We further derive (“Lloyd algorithm style”)
optimal update rules, wherein the more challenging derivation
is for the common layer quantizer to minimize the overall cost
while accounting for the effects of the individual layer quantiz-
ers. A complementary contribution develops a low complexity
variant of the joint quantizer design approach. The approach is
then specialized to the practically important case of Laplacian
sources. Early results appeared in a conference paper [11] with
focus on low complexity quantizer design for Laplacian sources
based on applying a so-called dead-zone quantizer (DZQ) to the
common layer and a mix of DZQ and uniform quantizers to the
individual layers, as explained in Section IV-B.

Finally we propose an iterative technique for joint design of
vector quantizers for all layers of this framework. For simplicity,
we first explain the approach for the setting of two quality
levels. Then we explain the extended approach to other relaxed
hierarchical structures. We develop a cost function which ex-
plicitly controls the tradeoff between distortions, receive rates,
and total transmit rate. We then propose an iterative approach for
jointly designing vector quantizers for all the layers, wherein we
estimate optimal quantizer partitions at all the layers, given re-
construction codebooks, and optimal reconstruction codebooks
for all quality levels, given quantizer partitions, iteratively, until
convergence.

Experimental evaluation results for Laplacian and multivari-
ate normal distributions substantiate the usefulness of the pro-
posed technique.

The rest of this paper is organized as follows. Section II pro-
vides background and preliminaries. Sections III and IV present
the proposed methods. Experimental results are summarized in
Section V, with conclusion in Section VI.

II. BACKGROUND AND PRELIMINARIES

Few mathematical results have had as much impact on the
foundation of the information age as Shannon’s 1948 point-to-
point communication theorems [12]. However, the communica-
tion model assumed in these seminal contributions is inadequate
for the realities of modern networks. Extensions of the theory to
multi-terminal settings have proven difficult and, despite several
spectacular advances, many questions remain only partially
answered, and particularly lacking is significant progress on the
conversion of available insights into practical approaches.

A. Successive Refinement and Scalable Coding

Rate-distortion theory is a major branch of information theory,
focused on the theoretical foundation for lossy data compression.
The fundamental theorem of rate-distortion theory [12] is that
the minimum bit rate (per sample) required to convey a sequence
of independent random variables, each drawn from the proba-
bility distribution of a generic random variable X , so that the
sequence can be reconstructed at average distortion of at most
D, is given by:

R(D) = min
p(x̂|x):E{d(x,x̂)}≤D

I(X; X̂), (1)

where E{d(x, x̂)} evaluates the distortion between the two ran-
dom variables. The result states that the rate-distortion function,
indicating the minimum achievable rate for prescribed distor-
tion, is given by minimizing the mutual information I(X; X̂)
between X and reconstruction variable X̂ , over all random
encoders satisfying the distortion constraint. It led to extensive
research efforts devoted to finding rate-distortion bounds for
various new settings [7], [13]–[16], numerical evaluation of the
rate distortion function for generic sources and distortion mea-
sures [17]–[20] and to practical scalar/vector quantizer design
and analysis [21]–[23].

Rate-distortion theory considers scalable coding, a special
case of multiple descriptions coding, through the concept of suc-
cessive refinement of information, and specifically determines
conditions under which scalable coding incurs no rate-distortion
performance penalty [24]–[31]. In scalable coding, the encoder
generates two layers of information, namely, the base layer at
rate R12, and the enhancement layer at rate R2 (the subscripts
specify to which decoders the information is routed). The base
layer provides a coarse reconstruction of the source (at rateR12),
while the enhancement layer is used to ‘refine’ the reconstruction
beyond the base layer (at an overall rate of R2 +R12). The base
and enhancement layer distortions are D1 and D2, respectively,
where D2 < D1.

A source-distortion pair for which it is possible to achieve
rate-distortion optimality simultaneously, at both the layers, is
called successively refinable in the literature. The necessary
and sufficient condition for such optimality to be achieved at
distortion levels D1 and D2 is that there exists a conditional
probability distribution p(x̂1, x̂2|x) such that:

E{d(X, X̂1)} ≤ D1, E{d(X, X̂2)} ≤ D2,

I(X; X̂1) = R(D1), I(X; X̂2) = R(D2), (2)

X ↔ X̂2 ↔ X̂1,

where X ↔ X̂2 ↔ X̂1 denotes the requirement that the three
variables form a Markov chain. Thus, if a source-distortion
pair is not successively refinable, it is impossible to maintain
optimality at both layers simultaneously within the scalable
coding framework.

B. The Gray-Wyner Network and Common Information

The Gray-Wyner (GW) network, consists of an encoder that
transmits two correlated sources to two receivers using three
channels: a common channel linking the encoder to both re-
ceivers, and two private channels linking it to individual re-
ceivers. The channels are assumed to be noiseless and each has
a specified per bit communication cost (Fig. 1).

The objective is to minimize the communication cost while
maintaining decoder distortion at or below the prescribed levels.
Rate tradeoffs are central here as we seek the optimal rate
triplet (R12, R1, R2). GW derived the asymptotic minimum cost
achievable for this network.

There are several concepts associated with the notion of
the common information (CI) of two random variables. One
important CI definition is due to Wyner [8] who characterized
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Fig. 1. The Gray-Wyner network.

Fig. 2. The optimal scalar dead-zone quantizer for Laplacian sources with
nearly uniform reconstruction rule [11].

it in terms of the GW network: the minimum achievable rate
R12 on the shared branch of the lossless GW network, when
the sum transmit rate is set to its minimum (the joint entropy),
i.e., R0 +R1 +R2 = H(X,Y ). A different concept of CI was
proposed by Gács and Körner [32], and is extremely relevant
to the contribution in this paper. Ahlswede and K ö rner [33]
gave an alternative characterization of this CI that directly ties
it to the GW network: the maximum achievable rate R12 on the
shared branch of the lossless GW network, when the two receive
rates are set to their minimum levels, i.e., R12 +R1 = H(X)
and R12 +R2 = H(Y ).

C. Laplacian Sources

The Laplacian distribution is a common model for multimedia
sources in many practical applications:

fX(x) =
λ

2
e−λ|x|, (3)

with parameter λ > 0.
1) Scalar Quantization of Laplacian Sources: In [34], the

optimal entropy constrained quantizer for the Laplacian source
was derived and shown to be the so-called dead-zone quantizer
(DZQ) depicted in Fig. 2, which exhibits a uniform step-size
for all intervals except the dead-zone wider interval about the
origin.

2) Scalable Coding of Laplacian Sources: Current scalable
coding standards including scalable HEVC [35] for video, and
scalable AAC [36] for audio, employ DZQ at the base layer for
quantizing the source, and at the enhancement layer, a scaled
version of the base layer DZQ to quantize the base layer re-
construction error. However, a significantly improved approach
to scalable coding of Laplacian sources, called conditional en-
hancement layer quantization (CELQ) [5]:
� The base layer employs a DZQ.

Fig. 3. Conditional enhancement layer quantizer for Laplacian sources [5],
[11]. Based on the base layer DZQ interval, the enhancement layer quantizer is
chosen.

� The enhancement layer quantizers are conditioned on the
base layer quantization interval: Use DZQ if a dead zone
interval was established by the base layer, and use a uniform
quantizer otherwise (as illustrated in Fig. 3).

While CELQ offers considerable gains and approaches opti-
mality within the classical scalable coding framework, it never-
theless suffers from the notorious scalable coding penalty, which
motivates the approach pursued in this paper.

III. OVERVIEW OF THE PROPOSED FRAMEWORK

The proposed layered coding framework is motivated by
the recent lossy generalization of common information [6],
[9]. We define the lossy generalization of the Gács-Körner
CI at (D1, D2), denoted CGK(X,Y ;D1, D2), as follows: Let
RGK(D1, D2) be the set of rate triplets (R12, R1, R2) such that
for any ε > 0,

R12 +R1 ≤ RX(D1) + ε, R12 +R2 ≤ RY (D2) + ε.
(4)

Then,

CGK(X,Y ;D1, D2) = sup
RGK(D1,D2)

R12. (5)

The lossless CGK(X,Y ; 0, 0) was considered a negative result
by Gács-Körner, as it is typically much smaller than the mutual
information of X and Y and often zero. But the seemingly
degenerate special case, where X = Y in the lossy setting, is
a highly significant quantity. Here, CGK reflects the CI between
reconstructions of a given source at different quality levels,
which is directly applicable to layered coding. Specifically, [6],
[9] derived the single letter characterization for the lossy CGK

for layered coding as: sup I(X;U) where U is an auxiliary
random variable and the supremum is over all conditional dis-
tributions P (U, X̂1, X̂2|X) such that X̂1 and X̂2 achieve RD
optimality atD1 andD2, respectively, and the following Markov
chains hold:

X ↔ X̂1 ↔ U, X ↔ X̂2 ↔ U. (6)

In this section we illustrate both the novel layered coding
paradigm [6] and the significance of effective extraction of
common information, via quantizer design for a toy example
involving a simple uniform distribution. For a uniformly dis-
tributed random variable, the optimal entropy constrained scalar
quantizer (ECSQ), at rate log(N), where N is an integer, is
a uniform quantizer with N levels [37]. Fig. 4 shows, for a
source distributed uniformly over the interval [0,6], the optimal
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Fig. 4. Optimal quantizer partitions for a source uniformly distributed in [0,
6], at rates R1 = 2 and R2 = log(6).

Fig. 5. Common information based layered coding paradigm: rate R12 sent
to both decoders, and individual rates R1 and R2 sent to respective decoders.

quantizer partitions at rates R1 = 2 and R2 = log(6), resulting
in distortionD1 andD2, respectively. Note that not all boundary
points of quantizer 1 align with boundary points of quantizer
2. This implies that the source is not successively refinable
at these rates, and scalable coding yields enhancement layer
performance that is worse than independent quantization at rate
log(6). Clearly, not all the information required to achieve D1

is useful to achieve D2, hence the suboptimality. On the other
hand independent coding is wasteful as there is still considerable
overlap in information conveyed to the two decoders.

These observations strongly motivate the common informa-
tion based layered coding framework to ensure that each decoder
receives only information necessary for its reconstruction. This
layered coding paradigm is illustrated in Fig. 5. The encoder
generates three packets, one at rate R1 sent exclusively to the
base decoder reconstructing X̂1, one at rate R2 sent exclusively
to the decoder reconstructing X̂2, and the “common” packet, at
rate R12 sent to both decoders.

This paradigm subsumes, as special cases, conventional scal-
able coding (let R1 = 0) and non-scalable coding (let R12 = 0).
Moreover, this framework provides an extra degree of freedom
such that rate-distortion optimality at both layers can potentially
be achieved at a lower total transmit rate than non-scalable
coding. Returning to our toy example of a uniformly distributed
source reconstructed at receive rates of 2 and log(6), let us em-
ploy the proposed layered coding paradigm, with rates R12 = 1,
sent to both decoders; R1 = 1 and R2 = log(3) each sent to
the respective decoder (as per Fig. 6). Note that the framework
implements the same quantization partitions as independent
coding, ensuring rate-distortion optimality at the decoders, but
with a 22% reduction in total transmit rate. This example il-
lustrates how appropriately designed quantizers for the layered

Fig. 6. Quantizer partitions for common information based layered coding,
achieving successive refinement for the example of Fig. 4.

Fig. 7. A 2D example with training points shown as black dots. (a) Individual
coding partitions at rates R1 = 2 and R2 = log(6). (b) Common information
based layered coding partitions, with common rateR12 = 1, and individual rates
R1 = 1 (red partitions) and R2 = log(3) (green partitions) sent to respective
decoders.

coding paradigm can efficiently extract information common to
different quality levels. Fig. 7 provides similar illustration for a
vector source. Such quantizer design methods are derived next.

IV. JOINT DESIGN OF QUANTIZERS FOR COMMON

INFORMATION BASED LAYERED CODING

The objective is to design entropy-constrained scalar/vector
quantizers for specified received rates, Rr1 = R12 +R1 = c1
andRr2 = R12 +R2 = c2, at decoder 1 and 2, respectively. Op-
timization under this constraint reflects the fundamental tradeoff
between total transmit rate, Rt = R12 +R1 +R2 = c1 + c2 −
R12 (or equivalently R12), and the distortion levels D1 and
D2. The two extremes are: i) non-scalable coding, incurring the
maximum Rt = c1 + c2 (lowest R12 = 0), and minimum dis-
tortion D∗(c1) +D∗(c2), where D∗(·) is the optimal distortion
at a given rate; and ii) conventional scalable coding, with the
minimum Rt = c2 (highest R12 = c1), but at high distortion at
the enhancement layer due to the scalable coding penalty. Let us
formulate the cost function that captures this tradeoff, subject to
the prescribed receive rates, as the Lagrangian:

J = a1D1 + a2D2 + λ1(R1 +R12)

+ λ2(R2 +R12) + λ12R12, (7)

where a1 and a2 control the relative importance of D1 and D2,
and λ1, λ2, and λ12 constrain Rr1 , Rr2 and R12, respectively.
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Fig. 8. Quantizer partition boundaries for subdividing a common layer quan-
tization interval. The decision points of the common layer are shown below the
line, and above it for individual layer l.

Note that we maintain a slightly redundant notation for consis-
tency with existing literature. Clearly, one of the five weights,
a1, a2, λ1, λ2, and λ12 in (7) is redundant. Quantizers designed
to minimize the cost function (7) achieve an operating point on
the optimal curve implementing the tradeoff between weighted
sum of distortions, transmit rate and receive rates.

A. Quantizer Design for Scalar Sources:

We design the quantizers iteratively, with one quantizer up-
dated in each iteration to minimize the overall cost function
while the others are fixed, until convergence. In the following
subsections, the superscripts 1, 2 and 12 refer to parameters of
individual layers 1, 2, and common layer, respectively.

1) Individual Layer Quantizer Design: Given a common
layer quantizer with M intervals and partition boundaries
t12i , i = 0, 1, . . . ,M , we need to design ECSQ for each interval,
(t12i−1, t

12
i ), i = 1, 2, . . . ,M and each individual layer, l = 1, 2.

Note that, given the common layer, the individual quantizers of
layers 1 and 2 have no effect on each other’s distortion and rate
and can be optimized independently. Hence, the cost function
for optimization of individual quantizers for each of the layer
simplifies to Jl = alDl + λlRl for l = 1, 2.

We employ the well known iterative ECSQ design tech-
nique for each interval, (t12i−1, t

12
i ), i = 1, 2, . . . ,M and each

individual layer, l = 1, 2. Let N l
i be the number of subinter-

vals for layer l at common layer interval (t12i−1, t
12
i ). Fig. 8

depicts partition boundaries for layer l at interval (t12i−1, t
12
i )

as tlq,i, q = 0, 1, 2, . . . , N l
i . (Note the end points tl0,i = t12i−1

and tl
N l

i ,i
= t12i .) The iterative ECSQ algorithm employed is

summarized below:
i) Initialize the partition boundaries, tlq,i, q =

1, 2, . . . , N l
i − 1.

ii) Calculate N l
i representative levels xl

q,i and subinterval
probabilities plq,i for q = 1, 2, . . . , N l

i :

xl
q,i =

∫ tlq,i
tlq−1,i

xf(x)dx

∫ tlq,i
tlq−1,i

f(x)dx
, (8)

plq,i =

∫ tlq,i

tlq−1,i

f(x)dx, q = 1, 2, . . . , N l
i , (9)

where f(x) denotes the source distribution.
iii) Calculate partition boundaries, tlq,i; q = 1, 2, . . . , N l

i −
1:

tlq,i =
xl
q,i + xl

q+1,i

2
− λl

al
∗ log2 p

l
q,i − log2 p

l
q+1,i

2(xl
q,i − xl

q+1,i)
,

(10)

iv) Repeat (8), (9) and (10) until there is no further reduction
in cost (or a prescribed stopping criterion is met).

2) Common Layer Quantizer Design: Unlike individual
layer quantizer design, any partition change in the common layer
quantizer impacts all distortions and rates, hence we cannot sim-
ply apply the standard ECSQ update rules. Given both individual
layers’ quantizers, the optimal update for common layer decision
points, t12i , i = 1, 2, . . . ,M − 1 is (see Appendix A):

t12i

=
(a1(x

1
1,i+1)

2 + a2(x
2
1,i+1)

2)− (a1(x
1
N1

i ,i
)2 + a2(x

2
N2

i ,i
)2)

2((a1x1
1,i+1 + a2x2

1,i+1)− (a1x1
N1

i ,i
+ a2x2

N2
i ,i

))

−
λ1(log2 p

1
1,i+1 − log2 p

1
N1

i ,i
) + λ2(log2 p

2
1,i+1 − log2 p

2
N2

i ,i
)

2((a1x1
1,i+1 + a2x2

1,i+1)− (a1x1
N1

i ,i
+ a2x2

N2
i ,i

))

− λ12(log2 p
12
i+1 − log2 p

12
i )

2((a1x1
1,i+1 + a2x2

1,i+1)− (a1x1
N1

i ,i
+ a2x2

N2
i ,i

))
, (11)

where centroids p12i =
∫ t12i
t12i−1

f(x)dx are calculated using previ-

ous iteration values of t12i , for i = 1, 2, . . . ,M .
3) Joint Design of Quantizers: The overall algorithm for

joint design of quantizers for all layers is:
i) Initialize the common layer partition boundaries, t12i , i =

1, 2, . . . ,M − 1.
ii) Update the individual layer quantizers using the itera-

tive steps (8), (9) and (10) to calculate xl
q,i, plq,i for

q = 1, 2, . . . , N l
i and tlq,i for q = 1, 2, . . . , N l

i − 1 for
both l = 1, 2 and all i = 1, 2, . . . ,M .

iii) Update the common layer quantizer using (11) to calcu-
late t12i , i = 1, 2, . . . ,M − 1.

iv) Repeat steps (ii) and (iii) until there is no further reduction
in cost (or a prescribed stopping criterion is met).

Note that during the ECSQ design at common or individual
layers, the number of partitions, i.e., M and N l

i are not known.
To circumvent this, we simply initialize our algorithm with a
large number of partitions, and in each iteration, based on the
given a1, a2, λ1, λ2, and λ12, the algorithm reduces the number
of partitions, as necessary.

B. Low Complexity Quantizer Design for Laplacian Sources

For the practically important case of Laplacian source distri-
bution we propose a low complexity alternative design:

i) For the common layer, we estimate the best step size for
the DZQ at a given rate, R12.

ii) For the two individual layers, we design optimal entropy
constrained quantizers for each common layer quantizer
interval, at their corresponding rates of R1 and R2.
Specifically, we iteratively optimize the quantizer inter-
val partitions and reconstruction points to minimize the
entropy constrained distortion, with smart initializations
of,
� A DZQ for the dead zone interval, and
� A uniform quantizer for other intervals,

of the common layer quantizer.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 02,2021 at 23:45:33 UTC from IEEE Xplore.  Restrictions apply. 



1792 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

iii) We then numerically estimate the optimal common layer
rate, by trying multiple allowed common rates and select-
ing the one that results in minimum cost J .

Since the dead zone interval contains a truncated Laplacian
distribution and other intervals contain a truncated exponential
distribution, we select the initializations in step (ii) above to be
the optimal entropy constrained quantizers of their correspond-
ing non-truncated distributions.

Note that we can achieve non-zero common rate at negligible
ΔD, if the DZQ at rate R12 is such that all its partition points
align closely with partition points of DZQ at both rates c1 and
c2. Conditions for such an alignment of partitions between two
DZQ were derived in [38]: the dead-zone of the coarser DZQ
has to be divided into 2n+ 1 intervals, and other intervals of this
DZQ have to be divided into m+ 1 intervals, with 2n/m = z,
where,n andm are integers, and z is the ratio of the dead-zone to
the uniform interval lengths. Our design technique numerically
estimates the common layer DZQ which closely satisfies these
conditions with DZQ at both rate c1 and c2.

Note that the proposed design technique does not ensure joint
optimality of the quantizers, since we independently optimize
the common layer quantizer (e.g., DZQ for Laplacian) without
considering its effect on other layers. Nevertheless the approach
achieves considerable performance gains.

C. Quantizer Design for Vector Sources:

We design the quantizers iteratively by alternating between
the steps of optimal partitioning and optimal codebook es-
timation, until convergence, similar to the generalized Lloyd
algorithm [39].

We design an M -codebook ECVQ for the common layer, and
for each common layer region, i = 1, 2, . . . ,M we design an
ECVQ for each individual layer, l = 1, 2. Let N l

i be the number
of subregions for layer l at common layer region i. Let clq,i and
plq,i be the representative levels, and subregion probabilities, re-
spectively, for q = 1, 2, . . . , N l

i , i = 1, 2, . . . ,M , and l = 1, 2.
Finally, let p12i be the common layer regions probabilities for
i = 1, 2, . . . ,M . Following is the overall iterative algorithm:

i) Guess an initial set of representative levels clq,i and their
corresponding probabilities plq,i for q = 1, 2, . . . , N l

i , i =
1, 2, . . . ,M , and l = 1, 2.

ii) Assign each sample xt in training set S to common layer
region i and subregions’ representatives c1q1,i and c2q2,i, to
minimize the Lagrangian cost:

Jxt
(c1q1,i, c

2
q2,i

) = (a1||xt − c1q1,i||2 + a2||xt − c2q2,i||2)
− (λ1log2p

1
q1,i

+ λ2log2p
2
q2,i

+ λ12log2p
12
i ). (12)

iii) Find subregion Bl
q,i:

Bl
q,i = {x ∈ S : x is assigned to clq,i}

for q = 1, 2, . . . , N l
i , i = 1, 2, . . . ,M , and l = 1, 2.

iv) Calculate new representative levels and probabilities:

clq,i =
1

||Bl
q,i||

∑
x∈Bl

q,i

x, (13)

plq,i =
||Bl

q,i||
||S|| , (14)

for q = 1, 2, . . . , N l
i , i = 1, 2, . . . ,M , and l = 1, 2. Also

p12i =
∑N1

i
q=1 p

1
q,i for i = 1, 2, . . . ,M.

v) Repeat steps (ii), (iii) and (iv) until there is no further
reduction in overall cost: J =

∑
xt

Jxt
.

Notes on the designed layered coding quantizers:
The common layer quantizer does not reconstruct the source,

leading to flexibility in structure of the quantizer partition. That
is, we could potentially have irregular quantizers in the common
layer alone, or even in both common and individual layers, as
long as they combine together to result in an overall regular
quantizer. (This phenomenon is key to distributed quantization,
for example). Perhaps surprisingly, despite this flexibility, we
show in the following lemma that optimality implies regularity
of the common layer quantizer.

Lemma 1: If the overall quantizer partitions are regular, then
so is the optimal common layer quantizer partition.

Proof: Assume common layer’s cell j is not convex. Without
loss of generality, let us assume it consists of two regular
sub-cells j1 and j2. Let us define a new common layer quantizer
partition by dividing cell j into two cells j1 and j2. Since we
assumed the overall quantization partitions are regular, sub-cells
of j in individual layers are forced to be wholly contained
within either cell j1 or j2. Which implies that dividing common
layer cell j into two cells j1 and j2, does not alter the overall
quantization cells. Since the distortions at the decoder depend
only on the overall quantization cells, they are not altered by the
above common layer cell division. Also note that, receive rate
at decoder l is:

Rl +R12 = −
M∑
i=1

N l
i∑

q=1

plq,i log2 p
l
q,i, for l = 1, 2. (15)

Since the overall quantization regions are not altered, rate con-
tributions from subregions of common layer cell j (via plq,j)
get redistributed to rate contributions from subregions of com-
mon layer cell j1 (via plq,j1 ) and cell j2 (via plq,j2 ), and thus
Rl +R12 for l = 1, 2, remain unchanged. However, there is
increase in R12 = −∑M

i=1 p
12
i log2 p

12
i due to the subdivision

of cell j. That is, we obtain a new set of quantizers with the
same distortion levels and received rates, but a reduced transmit
rate (equivalently increased R12), which implies that cost J is
reduced. Hence, the optimal common layer quantizer must be
regular. �

D. Layered Coding With Multiple Quality Levels

It is not straightforward to extend the concept of common
information to more than two quality levels. The main chal-
lenge emerges when one notes that shared information can exist
between any of the levels. Clearly, just one common layer,
common to all quality levels cannot capture all the redundancies
present. In fact, common information can exist between any
subset of quality levels, and the number of bit-stream would grow
combinatorially with the number of quality levels. A recent result
from our lab proves that “combinatorial message sharing” can be
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Fig. 9. Common information based layered coding: the multi-layer scenario.

used to strictly improve the theoretically achievable region for
the closely related problem of multiple descriptions coding [29],
[31]. While this approach is useful to obtain asymptotic bounds,
it is obviously impractical for real world applications. We hence
propose employing a linearly growing rate-splitting approach
where each layer receives an individual packet for itself and
all the common packets received by lower layers (layers with
higher distortion constraints). Specifically, with L decoders,
there are 2L− 1 packets consisting of: L individual packets
at rates Ri, i = 1, . . . , L; and L− 1 common packets at rates
R123···L, R23···L, . . . , R(L−1)L. The overall set of packets is in-
dexed by the destination decoders and the index set is

Q = {1, 2, . . . , L− 1, L; 123 · · ·L, 23 · · ·L, . . . , (L− 1)L},
where, for example, index 23 · · ·L means the packet is sent to
decoders 2, 3, . . . , L. Fig. 9 depicts this scenario.

Similar to previous part we could define the cost as

J =

L∑
l=1

alDl +
∑
q∈Q

λqRq, (16)

where the first and second terms in the cost J , represent the
distortion and rate penalties respectively. Finally using the ap-
proach explained in Section IV-C we design the best entropy
constrained vector quantizers. For the specific example of 3
quality level coding, step (ii) of the algorithm will assign each
training sample xt to cell i of the common layer shared by all
three levels (that is sent at rate R123), subcell (q1, i) within i
for the private layer of quality level 1 (that is sent at rate R1),
subcell (q23, i) within i of the common layer shared by quality
levels 2 and 3 (that is sent at rate R23), subcell (q2, q23, i) within
(q23, i) for the private layer of quality level 2 (that is sent at rate
R2) and subcell (q3, q23, i) within (q23, i) for private layer of
quality level 3 (that is sent at rate R3), to minimize the cost in
(16). Other steps are extended similarly.

V. EXPERIMENTAL RESULTS

A. Joint Design of Scalar Quantizers

Simulations were performed on a Laplacian source with
λ = 1. In the first experiment, the receive rates were set to c1 = 2

Fig. 10. Excess distortion versus total transmit rate.

TABLE I
TRANSMIT RATE AT NEGLIGIBLE EXCESS DISTORTION: INDEPENDENT CODING

VS COMMON INFORMATION BASED (JOINT DESIGN) APPROACH

and c2 = 3. Fig. 10 shows the total transmit/storage rate Rt ver-
sus the excess distortion ΔD = D1 +D2 −D∗(c1)−D∗(c2),
obtained by quantizers designed by the proposed iterative tech-
nique at common layer rates (R12) ranging from 0 (independent
coding) to 2 bits (scalable coding). It also shows the convex hull
between independent and scalable coding, which can be obtained
without recourse to common information via time sharing. Note
that scalable coding as employed by current standards incurs
about 1.5 dB excess distortion over the efficient scalable coding
point obtained as a special case of our approach, which itself
incurs about 0.8 dB excess distortion over non-scalable coding.
The results clearly demonstrate that the concept of common
information enables operating at all intermediate tradeoff points,
at considerably better performance than the convex hull between
independent and scalable coding.

An interesting observation in Fig. 10 is the existence of an
operating point atRt = 4.3 (orR12 = 0.7), with distortion close
to non-scalable coding, yet with a 14% reduction in total transmit
rate. We thus conducted more experiments under various receive
rate constraints and tabulated in Table I the transmit rate savings
achievable at negligible excess distortion. Significant transmit
rate savings are observed, ranging from 13% to 30%, and demon-
strate the capability of the proposed technique to efficiently
extract the common information across quality levels. These sav-
ings will translate to significant operating cost reduction at data
centers for storage, transmission to, and caching at, intermediate
nodes for content providers who currently default to generating
independently coded copies at different quality levels.
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Fig. 11. Excess distortion versus total transmit rate (low complexity) as
presented earlier in [11].

TABLE II
TRANSMIT RATE AT NEGLIGIBLE EXCESS DISTORTION: INDEPENDENT CODING

VS COMMON INFORMATION BASED (LOW COMPLEXITY) APPROACH

B. Low Complexity Quantizer Design for Laplacian Sources:

This section reports on experiments with the low complex-
ity variant derived for sources that are modeled as Laplacian,
wherein some coding optimality is sacrificed for low complexity.
We test performance on a Laplacian source with λ = 1. The
receive rates were first set to c1 = 1.6 and c2 = 2.8. Fig. 11
depicts the excess distortion ΔD versus the transmit rate Rt,
obtained by quantizers designed at common layer rates (R12)
ranging from 0 (independent coding) to 1.6 bits (scalable coding
using CELQ), as well as the convex hull for common infor-
mation coding, obtained by time sharing. Note again that the
scalable coding employed by current standards incurs about
1.5 dB excess distortion over our own scalable coding solution,
whose excess distortion is 0.8 dB over non-scalable coding. The
proposed technique can operate at all points along the convex
hull and at considerably better performance compared to the
scalable coding of current standards.

In this experiment we also note an interesting operating point
in Fig. 11, atRt = 4 or equivalentlyR12 = 0.4, where distortion
close to non-scalable coding is maintained, but at a 9% reduction
in total transmit rate. We experimented with various receive
rate constraints to obtain similar operating points where rate
reduction is achieved at negligible excess distortion cost. These
are tabulated in Table II and demonstrate the capability of the
approach to efficiently extract the common information across
quality levels.

In summary, comparing the results for joint versus low com-
plexity design, we observe that joint design offers more extensive
coding gains due to better extraction of commoin information,
while the low complexity approach offers more modest gains
but at obvious practical implementation benefits.

TABLE III
TRANSMIT RATE AT NEGLIGIBLE EXCESS DISTORTION: INDEPENDENT CODING

VS COMMON INFORMATION BASED APPROACH,
MULTIVARIATE NORMAL SOURCE

TABLE IV
THREE QUALITY LEVELS SETTING: TRANSMIT RATE AT NEGLIGIBLE EXCESS

DISTORTION: SEPARATE CODING VS COMMON INFORMATION BASED

APPROACH, MULTIVARIATE NORMAL SOURCE

C. Joint Design of Vector Quantizers

Consider a vector source drawn from multivariate normal

distribution x ∼ N(μ,Σ) with μ = (0, 1) and Σ =[
1 1
1 2 ]. For

independent (non-scalable) coding, we employ the generalized
Lloyd algorithm [39] to design the ECVQ. Note that while
Gaussian sources are successively refinable asymptotically (in
delay/block-length), this is not true at finite delay, which sug-
gests potential benefits to our proposed common information
paradigm. As shown in Table III, similar to the scalar case
we have significant reduction in total transmit rate compared
to independent coding at negligible cost in excess distortion.
These results further support the effectiveness of the proposed
approach in both scalar and vector quantizer design.

We further observe that even though the design algorithm does
not impose regularity on the codebook initialization (step 1 of
the algorithm), the ultimate quantizers were always regular, as
indeed anticipated by the lemma.

D. Design for Multiple Quality Levels

Here we experiment with the same multivariate Gaussian
source which is encoded to three quality levels L = 3. In this
case, the encoder generates five packets at rates R1, R2, R3,
R23, and R123. Decoders 1, 2, and 3 receive packets at rates
Rr1 = R1 +R123, Rr2 = R2 +R23 +R123, and Rr3 = R3 +
R23 +R123, respectively. The total transmit rate in the common
information paradigm is Rt = R1 +R2 +R3 +R23 +R123.

The results summarized in Table IV show significant reduc-
tion in total transmit rate compared to non-scalable coding,
at negligible cost in excess distortion. If we compare the two
quality level ECVQ case and the multi-level case, we observe
that, on average, more significant coding gains in multi-level
design, with roughly 50% reduction in total transmit rate com-
pared to 30% reduction in the two layer case. This is intuitively
reasonable, as the multi-level scenario offers more opportunity
to exploit inter-layer common information.
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Note that the results presented in Tables I, II, III, and IV, are
operating points (no loss compare to the independent coding of
the sources, with lower rate) which the other state of the arts
approaches such as scalable coding cannot achieve.

VI. CONCLUSION

A novel fundamental design technique is proposed for the
common information based layered coding framework, wherein
joint design of quantizers in all common and individual layers,
overcomes the limitations of conventional scalable coding and
independent (non-scalable) coding. The approach ensures that
each decoder receives only information useful to its reconstruc-
tion. It further offers the flexibility to achieve better operating
points on the optimal tradeoff curve between the extremes of
scalable or independent coding. The iterative scalar and vector
quantizer design techniques optimize all the quantizers jointly to
minimize the overall cost at each iteration. They enable common
information extraction between different quality levels at negli-
gible distortion penalty. A low complexity variant was derived
for Laplacian sources. Simulation results for scalar Laplacian
and Gaussian vector sources provide evidence for the benefits
of the proposed approach with up to 50% reduction in total
transmit rate compared to independent coding.

APPENDIX

To obtain the optimal partition for the common layer quan-
tizer, we minimize the Lagrangian cost

J = a1D1 + a2D2 + λ1(R1 +R12)

+ λ2(R2 +R12) + λ12R12, (17)

over the decision points t12i . The receive rate at decoder l is

Rl +R12 = −
M∑
i=1

N l
i∑

q=1

plq,i log2 p
l
q,i, l = 1, 2; (18)

the common rate is

R12 = −
M∑
i=1

p12i log2 p
12
i , (19)

and the distortion at decoder l is

Dl =

M∑
i=1

N l
i∑

q=1

∫ tlq,i

tlq−1,i

(x− xl
q,i)

2f(x)dx, l = 1, 2. (20)

Also note that tl
N l

i ,i
= t12i and tl0,i+1 = t12i . Differentiating J

with respect to t12i :

∂J

∂t12i
= a1

∂D1

∂t12i
+ a2

∂D2

∂t12i
+ λ1

∂(R1 +R12)

∂t12i

+ λ2
∂(R2 +R12)

∂t12i
+ λ12

∂R12

∂t12i
, (21)

where

∂Dl

∂t12i
=

∂
∫ tl

Nl
i
,i

tl
Nl

i
−1,i

(x− xl
N l

i ,i
)2f(x)dx

∂t12i

+
∂
∫ tl1,i+1

tl0,i+1

(x− xl
1,i+1)

2f(x)dx

∂t12i

= (t12i − xl
N l

i ,i
)2f(t12i )− (t12i − xl

1,i+1)
2f(t12i )

= (((xl
N l

i ,i
)2 − (xl

1,i+1)
2)− 2 t12i (xl

N l
i ,i

− xl
1,i+1))f(t

12
i ),

(22)

and

− ∂(Rl +R12)

∂t12i
=

∂(pl
N l

i ,i
log2 p

l
N l

i ,i
)

∂t12i
+

∂(pl1,i+1 log2 p
l
1,i+1)

∂t12i

=
d(pl

N l
i ,i

log2 p
l
N l

i ,i
)

dpl
N l

i ,i

∗
∂pl

N l
i ,i

∂t12i
+

d(pl1,i+1 log2 p
l
1,i+1)

dpl1,i+1

∗ ∂pl1,i+1

∂t12i

= (log2 e+ log2 p
l
N l

i ,i
) ∗ f(t12i )− (log2e+ log2 p

l
1,i+1)

∗ f(t12i )

= (log2 p
l
N l

i ,i
− log2 p

l
1,i+1) ∗ f(t12i ), (23)

and similarly,

−∂(R12)

∂t12i
= (log2 p

12
i − log2 p

12
i+1) ∗ f(t12i ). (24)

By setting ∂J
∂t12i

to zero and reducing f(t12i ) from all terms we
finally obtain:

t12i

=
(a1(x

1
1,i+1)

2 + a2(x
2
1,i+1)

2)− (a1(x
1
N1

i ,i
)2 + a2(x

2
N2

i ,i
)2)

2((a1x1
1,i+1 + a2x2

1,i+1)− (a1x1
N1

i ,i
+ a2x2

N2
i ,i

))

−
λ1(log2 p

1
1,i+1 − log2 p

1
N1

i ,i
) + λ2(log2 p

2
1,i+1 − log2 p

2
N2

i ,i
)

2((a1x1
1,i+1 + a2x2

1,i+1)− (a1x1
N1

i ,i
+ a2x2

N2
i ,i

))

− λ12(log2 p
12
i+1 − log2 p

12
i )

2((a1x1
1,i+1 + a2x2

1,i+1)− (a1x1
N1

i ,i
+ a2x2

N2
i ,i

))
. (25)
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