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Abstract— What is the optimal source-channel communication
system for a given finite block length? The problem of obtaining
the vector transformations that optimally map between the m-
dimensional source space and the k-dimensional channel space
is considered under a given channel power constraint and
mean square error distortion measure. Closed form necessary
conditions for optimality of the encoder and decoder mappings
are derived. The optimal mappings are obtained using an iterative
algorithm that updates encoder and decoder mappings according
to optimality conditions at each iteration. Such mappings are
used in a practical analog joint source channel system that
transmits a continuous alphabet discrete time source over a
noisy channel. Numerical results are presented for several source-
channel distributions and it is shown that the optimal mappings
outperform the previous heuristic mappings for both bandwidth
expansion and compression.

I. INTRODUCTION

One of the fascinating results in information theory is that
uncoded transmission of Gaussian samples over an additive
white Gaussian noise (AWGN) channel is optimal in the sense
that it yields the minimum mean square error between source
and reconstruction [1]. This result demonstrates the potential
of joint source channel coding: Such a simple scheme with no
delay provides the performance of the asymptotically optimal
separate source-channel coding system, without recourse to
complex compression and channel coding schemes that require
asymptotically long delays. However, it is well known that, in
general, the best source channel coding system with fixed finite
delay may not achieve Shannon’s asymptotic coding bound
(see eg. [2], [3]). Nevertheless, the problem of obtaining the
optimal scheme for a given finite delay is an important open
problem with considerable practical implications.

In the practical problem of transmitting a discrete time
continuous alphabet source over a discrete time additive analog
channel, there are two main approaches: ”analog commu-
nication” through direct amplitude modulation, and ”digital
communication” which typically consists of quantization, error
control coding and digital modulation. The main advantage
of digital over analog communication is due to advanced
quantization and error control schemes. However, there are two
notable shortcomings: First, error control coding (and to some
extent also source coding) usually incurs substantial delay to
achieve good performance. The other problem is the level
off effect due to underlying quantization. The performance
saturates as channel signal to noise ratio (CSNR) increases

above the threshold. Analog systems offer the potential to
avoid these problems. However, there are no known explicit
methods to obtain such mappings for a general source and
channel, nor is the best mapping known for other than the
trivial one of the scalar Gaussian source-channel pair. Among
the few practical analog coding schemes that have appeared
in the literature are those based on the use of space-filling
curves for bandwidth compression, originally proposed more
than 50 years ago by Shannon [4] and Kotelnikov [5], and
recently extended in the work of Fuldseth and Ramstad [6],
Chung [7], Ramstad [8] and Hekland et.al. [9]. Spiral-like
curves are explored for transmission of Gaussian sources over
AWGN channels. It is also noteworthy that, a similar problem
was solved in [10] with the constraint that both encoder and
decoder are linear. A similar problem for digital systems was
also studied by Fine [11]. Certain extensions of Fine’s work
can be found in [12].

In this paper, we investigate the problem of obtaining the
vector transformations that optimally map between the m-
dimensional source space and the k-dimensional channel space
under a given channel power constraint and mean square error
distortion measure. We provide necessary conditions for opti-
mality of the mappings used at the encoder and the decoder.
Note that virtually any source-channel communication system
(including digital communication) is a special case of such
mappings, as shown in Figure 1. A digital system including
quantization, error correction and modulation boils down to a
mapping from the source space Rm to the channel space Rk.
Hence the derived optimality conditions are generally valid
and allow for digital communications as the extreme special
case. Based on the optimality conditions we derive, we propose
an iterative algorithm to optimize the mappings for any given
m, k (i.e., for both bandwith expansion or compression) and
for any given source-channel distribution. To our knowledge,
this problem has not been solved, even for the scalar source-
channel pair, except when both source and channel are scalar
and Gaussian. We provide examples of such m : k mappings
for source-channel pairs (other than the well known scalar
Gaussian example) and construct a source-channel system that
performs such mappings that outperform those obtained in [6],
[7], [8], [9].

In Section II, we formulate the problem. In Section III, we
derive the necessary conditions for optimality. The iterative
algorithm is presented in Section IV. We provide example
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Fig. 1. A general scheme for a block based communication system

mappings and comparative results in Section V. We conclude
the paper in Section VI.

II. PROBLEM FORMULATION

A. Preleminaries and Notation

We consider the general communication system whose
block diagram is shown in Figure 1. An m-dimensional vector
source x ∈ Rm is transformed into a k-dimensional vector
y ∈ Rk by a nonlinear function g : Rm → Rk and transmitted
over an additive noise channel. The received output ŷ = y+n
is transformed to the estimate x̂ through a nonlinear function
h : Rk → Rm. The noise n is assumed to be independent of
the source x. The m-fold source density is denoted as fX(x)
and the k-fold noise density is fN (n). Let G and H denote
the set of all square integrable functions {g : Rm → Rk} and
{h : Rk → Rm} respectively. Bold letters denote vectors or
matrices.

B. Problem Statement

Given an i.i.d., zero-mean vector source x ∈ Rm with
probability density fX(x), and an additive noise n ∈ Rk with
fN (n), we want to minimize MSE E(|x− x̂|2) subject to the
average power constraint

P [g] =
∫

Rm

g(x)Tg(x)fX(x)dx ≤ P, (1)

where P is the allowed power, by suitably selecting the
encoder g ∈ G and decoder h ∈ H. Bandwidth compression-
expansion is determined by the setting of the source and
channel dimensions, k/m. The power constraint limits the
choice of encoder function g. Note that, without a constraint
on g, the channel can be made effectively noise free.

C. Asymptotical Bounds

From Shannon’s lossy joint source channel coding theorem
(see eg.[2]) for the memoryless Gaussian source-channel pair,
it is known that if a code has asymptotic distortion D and the
additive noise has power σ2

n then R(D) ≤ k
mC(σ2

n) must hold,
where R(D) and C(σ2

n) denote the rate-distortion function
and channel capacity per channel use, respectively. By letting
R(D) = k

mC(σ2
n), a lower bound on the asymptotic distortion

of any code can be obtained. The rate-distortion function
for the memoryless Gaussian source under the squared-error
distortion measure is given by

R(D) = max(0,
1
2

log
σ2
x

D
). (2)

for any distortion value D ≥ 0. The capacity of the AWGN
channel with input power constraint P and noise variance σ2

n

is given by

C(σ2
n) =

1
2

log(1 +
P

σ2
n

)(bits/channel use). (3)

Equating R(D) = k
mC(σ2

n) we reach the optimal performance
theoretically attainable (OPTA). It is given by

DOPTA =
σ2
x

(1 + P
σ2

n
)

k
m

. (4)

Note that OPTA is derived without any delay constraints and
the optimal delay constrained mapping may not reach OPTA.
There is no achievable theoretical bound for joint source
channel coding with limited delay.

III. OPTIMALITY CONDITIONS

We proceed to develop the necessary conditions for optimal-
ity of the encoder and decoder subject to the average power
constraint (1).

A. Optimal Decoder Given Encoder

Assume that the encoder g is fixed. Then the optimal
decoder is the minimum mean square error estimator (MMSE)
of x given ŷ, i.e.,

h(ŷ) = E[x|ŷ]. (5)

Plugging the expressions for expectation, we obtain

h(ŷ) =

∫
x fX|Ŷ (x|ŷ)dx. (6)

Applying Bayes’ rule

fX|Ŷ (x|ŷ) =
fX(x)fŶ |X(ŷ|x)∫
fX(x) fŶ |X(ŷ|x)dx

(7)

and noting that fŶ |X(ŷ|x) = fN [ŷ − g(x)], the optimal
decoder can be written, in terms of known quantities, as

h(ŷ) =

∫
x fX(x) fN [ŷ − g(x)]dx∫
fX(x) fN [ŷ − g(x)]dx

. (8)

B. Optimal Encoder Given Decoder

Assume that the decoder h is fixed. Our goal is to minimize
MSE subject to the average power constraint. Let us write
MSE explicitly as a functional of g

D[g] =

∫ ∫
[x− h(g(x) + n)]T[x− h(g(x) + n)]

fX(x)fN (n)dxdn. (9)

We construct the Lagrangian cost functional to minimize

J [g] = D[g] + λ{P [g]− P} (10)
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over the mapping g. To obtain necessary conditions we apply
the standard method in variational calculus [13]:

∂

∂ε

∣∣∣∣
ε=0

J [g(x) + εη(x)] = 0 (11)

for all admissible variation functions η(x). Note that, since
the power constraint is considered in the cost function, the
variation function η(x) does not need to satisfy the power
constraint (all continous differentiable functions η : Rm → Rk

are admissible). Applying the above condition, we get∫ {
λg(x)−

∫
h′(g(x) + n)[x− h(g(x) + n)]fN (n)dn)

}
η(x)fX(x)dx = 0, (12)

where h′ denotes the Jacobian of the vector valued function
h. The equality for all admissible variation functions, η(x),
requires the expression in braces to be zero (more formally the
Frechet derivative [13] should be zero to have an extremum
point of the functional J [13]). This gives the necessary
condition for optimality as

∇J [g] = 0, (13)

where

∇J [g]=λfX(x)g(x)−
∫

h′(g(x)+n)[x−h(g(x)+n)]

fN (n)fX(x)dn. (14)

Unlike the decoder, the optimal encoder is not in closed form
but a necessary condition for optimality is given.

IV. ALGORITHM DESIGN

The basic idea is to iteratively solve the necessary conditions
for optimality, successively decreasing the total Lagrangian
cost. Iterations are performed until the algorithm reaches
a stationary point where the total cost does not decrease
anymore. Solving for the optimal decoder is straightforward
since the decoder can be expressed as closed form functional
of known quantities, g, fX and fN. Since the encoder cannot
be expressed as a closed form, we perform steepest descent
search on the direction of the Frechet derivative of the total
cost function with respect to the encoder mapping g. At
each iteration of g total cost decreases, iterations are kept till
convergence. We keep updating g according to

gi+1(x) = gi(x)− µ∇J[g], (15)

where i is the iteration index and µ is the step size. At each
iteration i, total cost decreases monotonically and iterations are
kept until convergence. As the initial condition for the encoder
mapping ginit, previously proposed suboptimal mappings[8],
[7] can be used.

Note that, like every iterative algorithm of this type, there is
no guarantee that the algorithm will converge to the globally
optimal solution. The algorithm will converge to a local
minimum which may not be unique. To avoid poor local
minima, one can run the algorithm several times with different
initial conditions or may apply more structured solutions such

Algorithm 1 Encoder and Decoder Iterations
Initialization Set g(x) = ginit(x), i = 0

Find the optimal decoder using (8)
Set cost
while costi < costi−1 do

while costi < costi−1 do
i→ i+ 1
Update the encoder according to (15)
Evaluate the total cost according to (10)

end while
i→ i+ 1
Update the decoder according to (8)
Evaluate the total cost according to (10)

end while
return(g(x), h(x))
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Fig. 2. Example mappings for bi-modal GMM source, Gaussian channel,
modes at 3 and -3

as deterministic annealing [14]. In this paper we used the
previously proposed suboptimal mappings that are known to
perform relatively well, as initial condition to avoid poor local
minima.

V. RESULTS

We implemented the above algorithm by numerically calcu-
lating the integrals needed. For that purpose, we sampled the
distribution on the uniform grid. We also assumed bounded
support (−5σ to 5σ) for the infinite support distributions used
in the examples.

A. Scalar Mappings (m = 1, k = 1) for Gaussian Mixture
Source - Gaussian Channel

To demonstrate the use of nonlinear mappings consider
the Gaussian mixture source with distribution fx(x) =

1
2
√

2π

{
e
−(x−3)2

2 + e
−(x+3)2

2

}
and unit variance Gaussian

noise. The encoder and decoder mappings for this source-
channel setting are given in Figure 2. As intuitively expected,
since the two modes of the Gaussian mixture are well sepa-
rated, each mode locally behaves as Gaussian. Hence the curve
is roughly piece-wise linear, deviating significantly from a
truly linear mapping. This suggests that for most distributions,
considerable gains can be obtained by applying nonlinear
mappings.
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Fig. 3. Comparative results for 1:1 (scalar) mappings, GMM source-Gaussian
channel

Fig. 4. Obtained mapping for 2:1 Gaussian, CSNR=40dB, SNR=19.41dB.
The axes show the two dimensional input (x) and the function value (g(x))
is shown as the intensity level.

We also compare the performance of the proposed mappings
to linear encoder and decoder and the intermediate option of
linear encoder with the optimal decoder, as shown in Figure 3.
The proposed mapping outperforms the other mappings for the
shown range of CSNR values. Also note that optimizing only
the decoder improves the performance significantly compared
to a linear decoder.

B. (m = 2, k = 1) Gaussian source-channel mapping

In this section, we present a bandwidth compression ex-
ample with 2:1 mappings for Gaussian source and channel.
We compare the proposed mapping to the asymptotical bound
(OPTA) and prior work [9]. We also compare the optimal
encoder-decoder pair to the setting where only the decoder
is optimized and encoder is fixed. In prior work [7], [8], [9],
Archimedian spiral is found to perform well for Gaussian 2:1
mappings, and used for encoding and decoding with maxi-
mum likelihood criteria. We also initialize our algorithm with
Archimedian spiral (i.e., we set the initial encoder mapping
(ginit(x) to Archimedian spiral). For details of Archimedian
spiral and its settings, see eg. [9] and the references therein.

The obtained mapping is shown in Figure 4. As can be
shown, the mapping obtained by our algorithm resembles the
spiral although there is still a significant difference which can
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Fig. 5. Comparative results for Gaussian source-channel, 2:1 mapping

be seen in the performance results. Note that the encoding
scheme is also different from prior work, as we continuously
map the source to channel signal where two dimensional
source is mapped to the closet point on the space filling spiral.
The obtained mapping is also spiral shaped but the points
between spiral arms are not mapped to exactly the same value,
unlike the prior mappings used in the literature.

The comparative performance results are shown in Figure
5. The proposed mapping outperforms the Archimedian spiral
[9] for the entire range of CSNR values. It is notable that
intermediate option of optimizing the decoder improves the
performance significantly compared to using the inverse spiral
with maximum likelihood decoding.

C. (m = 1, k = 2) Gaussian source-channel mapping

In this section we compare the proposed mappings for
bandwidth expansion of Gaussian scalar source transmitting
over a vector Gaussian channel with two dimensions. We
compare the obtained mapping to prior work and OPTA.
Similarly, we use the prior work (inverse spiral) as the initial
condition. The results are presented in Figure 6. The proposed
mapping outperforms the inverse of Archimedian spiral [9]
for the whole range of CSNR values. Note the gap between
OPTA and and the achieved performance by our mappings
is significantly greater than that of in 2:1 mappings case.
There might be two possible reasons: i) The actual gap
between theoretically achievable performance with zero delay
and OPTA might be larger compared to 2:1 case. ii) Our
mappings might have converged to a local minimum that is
significantly greater than the global minimum. Currently, we
are investigating this problem.

D. (m = 2, k = 2) Laplacian source - Gaussian channel
mapping

In this part, we compare the mapping obtained through
our method, to optimal two dimensional vector quantization
followed by optimal channel coding that achieves the capacity,
for a two dimensional Laplacian vector source and two dimen-
sional Gaussian channel. The reason that we select a Laplacian
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mapping

source instead of a Gaussian is that, optimal mapping for a two
dimensional Gaussian source over a Gaussian vector channel
is a straightforward extension of that of the scalar Gaussian
source over scalar Gaussian channel, whose solution is well
known to be linear.

Note that, comparing our mapping to this method is unfair
to our method because while our method is zero-delay, the
capacity achieving channel codes would require long (possibly
infinite) delay. Still, proposed mappings outperform vector
quantization followed by channel coding significantly. For the
vector quantization rate-distortion performance we use the
results reported in [15], [16]. The comparative performance
results are shown in Figure 7.

VI. DISCUSSION AND FUTURE WORK

In this paper, we derived the necessary conditions of op-
timality for a given source-channel system. Based on the
necessary conditions, we derived an iterative algorithm which
generates the locally optimal analog mappings. Comparative
results and example mappings are provided and it is shown that
the proposed method improves upon prior work. Note that like

every iterative algorithm of this type, there is no guarantee that
the algorithm will converge to the globally optimal solution.
This problem can be solved by using a deterministic annealing
approach, which is left as a future work.
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