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e Audio Signal




Audio Coding

e Signal divided into overlapping frames
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@ Transform coefficients split into bands
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Audio Coding

@ Bands quantized and coded to generate bitstream

P P

Quantization &
Huffman Coding

§ § § §

Bitstream : Coded spectrum + Huffman codebook + Quantization step size |

Quantization &
Huffman Coding

Quantization &
Huffman Coding

Quantization &
Huffman Coding




Audio Coding

@ Coding problem definition: Achieve minimum perceptual distortion at
a given rate



Audio Coding

@ Coding problem definition: Achieve minimum perceptual distortion at
a given rate

o Perceptual?



Audio Coding

@ Coding problem definition: Achieve minimum perceptual distortion at
a given rate

o Perceptual?

e Based on content, human brain can tolerate (or mask) variable amount
of noise in each band



Audio Coding

@ Coding problem definition: Achieve minimum perceptual distortion at
a given rate

o Perceptual?

e Based on content, human brain can tolerate (or mask) variable amount
of noise in each band

o Captured in distortion measure as Maximum Noise to Mask Ratio
(MNMR)
MNMR — max Quantizat.ion noise energy
vbands ~ Masking threshold




Audio Coding

@ Coding problem definition: Achieve minimum perceptual distortion at
a given rate

o Perceptual?

e Based on content, human brain can tolerate (or mask) variable amount
of noise in each band

o Captured in distortion measure as Maximum Noise to Mask Ratio

(MNMR)

MNMR — max Quantizat.ion noise energy
vbands ~ Masking threshold

e Masking threshold estimated via psycho-acoustic analysis of input
frame
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Audio Coding

MDCT exploits redundancies within the current frame
Audio signal has a repeating pattern

Previously reconstructed data available at decoder

Can we exploit this correlation?
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MPEG AAC LTP

MPEG AAC uses the Long Term Prediction (LTP) tool
Predicts current frame from history
Reference position indicated via lag index

Waveforms matched via gain factor

Transformed
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MPEG AAC LTP

o Transformed coefficients split into bands

@ Prediction residue generated
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MPEG AAC LTP

o Transformed coefficients split into bands
@ Prediction residue generated

e Compared with original
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MPEG AAC LTP

Transformed coefficients split into bands
Prediction residue generated

Compared with original

Per band LTP flag set
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MPEG AAC LTP

Transformed coefficients split into bands
Prediction residue generated

Compared with original

Per band LTP flag set

Per frame flag indicates if LTP is used at all in current frame
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MPEG AAC LTP

@ The overall LTP parameter set includes

Lag index

Gain factor

Per band LTP flag
Per frame LTP flag



Outline

9 Current approach for LTP parameter value selection



Current approach

@ Lag and gain selected to minimize a mean squared prediction error cost
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@ Lag and gain selected to minimize a mean squared prediction error cost

@ The solution results in following choice of lag (L)
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Current approach

e Gain (G) calculated as

; x[m|z[m+2K — L]

G=

2K-1
Y z?[m+2K —L]

m=0

@ Gain further quantized to one of the 8 levels
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Current approach

@ For each band, LTP flag chosen as

1, if Energy of prediction residue < Energy of original coefficients
0, otherwise



Current approach

@ For each band, LTP flag chosen as

1, if Energy of prediction residue < Energy of original coefficients
0, otherwise

@ The per frame flag is set if heuristic bit savings due to LTP >
side-information rate of LTP
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Current approach

@ Given all LTP parameters, core AAC parameters are selected via a
two-loop search (TLS)

o For every band, an inner loop finds quantization step size for a target
distortion criterion

@ The outer loop then finds Huffman code books that minimize the bits
to encode and if this doesn’t meet the rate constraint for the frame,
the target distortion is changed and inner loop repeated
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Motivation

@ Objective results for reference AAC coder with and without LTP
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@ We know that TLS is sub-optimal for core AAC parameters selection

o Could this be the reason for the poor RD performance?



@ We know that TLS is sub-optimal for core AAC parameters selection

o Could this be the reason for the poor RD performance?

@ Replace TLS with RD optimal Trellis based core AAC parameters
selection [Aggarwal et al. 2006]



Motivation

@ Objective results for Trellis based AAC coder with and without LTP
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@ LTP tool is expected to give improvements for single instrument
harmonic files

@ Shortcomings attributed to the sub-optimal LTP parameter selection

o RD optimal approach has to select all encoder parameters with the
objective of minimizing perceptual distortion for a given rate

o Current approach clearly sub-optimal as LTP parameters selected to
minimize mean squared prediction error, and independent of core AAC
parameters

e Lag and gain selection ignores eventual prediction switching off in
select bands

e Time domain lag and gain selection effectively considers all transform
coefficients

e Lag and gain thus selected not the best when considering a reduced set
of coefficients

e The heuristically estimated bit savings due to LTP doesn’t match
actual bit savings reflected after the quantization and coding process
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Extension

@ Trellis based approach RD optimal for core AAC parameter selection

@ Extension

o All possible LTP parameter combinations formed
e Each case RD evaluated via Trellis
o Case which minimizes the distortion for a give rate forms final choice

e Computationally prohibitive as LTP adds significantly more choices of
parameters for
e gain (8)
o lag (frame length)
e per band LTP flags (2 power number of bands)



e Proposed RD optimization of LTP parameter values
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Proposed approach

@ We achieve computational efficiency by

e Limiting LTP lag and gain parameter space by careful selection of
“prediction survivors”

o Retains the simplicity of time domain lag and gain calculation

e Limiting number of LTP parameter combinations also limits the
number of full RD evaluations

o Full RD evaluation enables selection of encoder parameters aligned with
the end objective of minimizing perceptual distortion for a given rate

o Trellis approach, which operates in frequency domain, for selecting the
band wise quantization and coding parameters, is extended to select
the per band LTP flags as well
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@ P lag indices with the highest normalized cross-correlation are retained
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Prediction survivors

@ Forming the P lag survivors




Prediction survivors

@ Gain value for each of these lags found

Y 1x[m]z[m—|—2K —L]
G[L] =

m=0
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Prediction survivors
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Prediction survivors

o Closest Q quantization levels to each gain value are retained
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Prediction survivors

@ To form the overall PQ survivors
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Transformation

@ For each survivor, prediction residue is calculated and transformed
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RD evaluation

@ Each of these are rate-distortion evaluated via Trellis
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Per frame LTP flag
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Final selection

@ Parameters resulting in minimum distortion for the given rate chosen
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Trellis optimization

@ Trellis with stages for each band /, states in each stage for every
combination of per band LTP flags, quantization and coding
parameter values
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Trellis optimization

Each state associated with corresponding distortion and rate costs

@ Transition between states associated with costs to differentially encode
quantization and coding parameters

@ Dynamic programming pursued to find optimal path through trellis

This path corresponds to optimal set of per band parameters



Low complexity variant

o For low complexity Trellis replaced with Two Loop Search
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Low complexity variant

o For low complexity Trellis replaced with Two Loop Search
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Objective evaluation results
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Objective evaluation results

@ Along with results for the proposed coder (with P = 20 and Q = 6)
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Objective evaluation results

@ Trellis based coders compared to the TLS based coders
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Objective evaluation results

@ Along with results for proposed low complexity coder
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Objective evaluation results

o For other files
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Objective evaluation results

o For other files
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Subjective evaluation

@ MUSHRA listening tests for coders operating at 32 kbps
@ 12 listeners score on a scale of 0 (bad) to 100 (excellent)

@ Plots show average MUSHRA scores and 95% confidence interval



Subjective evaluation results

Single instrument file 1 Single instrument file 2
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Subjective evaluation results

Single instrument file 3 Polyphonic file with dominant instrument
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Subjective evaluation results

Speech file Complex polyphonic file
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Current approach for LTP parameter selection is sub-optimal

Joint selection of LTP and core AAC parameters which optimize
perceptual distortion-rate performance proposed

Low complexity two-loop search based variant also proposed

Subjective and objective evaluations show substantial improvements

@ We conclude that when rightly optimized LTP can be a potent tool



Thank you for your attention )




Questions? J
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