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Techniques which provide substantially better performance than TLS
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Not feasible for use in compression systems as currently known

separation techniques are highly complex, ine�cient or non-causal
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Known to be as ine�cient as the LTP tool described before

This tool's ine�ciency usually associated to the fact that data is highly

downsampled in the MDCT domain
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The standard LTP does this by �nding a match for the entire current
frame in history

But this is ine�cient as now samples predicted from at least as far
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Derivation of the CLTP �lter demonstrated that it can be practically
very e�ective

But this critically depends on suitable parameter estimation, which
accounts for perceptual distortion criteria

This achieved in two stages to keep complexity in check

In �rst stage a large subset estimated backward adaptively from

previously reconstructed samples

Assumes signal to be locally stationary

Reduces side information rate

In the next stage, parameters re�ned to account for perceptual
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Thus, parameters of jth �lter of the cascade are estimated in the
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Accounting perceptual distortion

Amongst CLTP parameters, Ni and part of αi , βi which capture the
non-integral pitch period are dependent only on a component's
waveform and not impacted by perceptual distortion

Thus we break αi , βi and introduce gain factors G i to form an
updated CLTP �lter

Hc(z) =
P−1

∏
i=0

(1−Gi (αiz
−Ni +βiz

−Ni+1))

These gains adapt each periodic component's �lter according to the
perceptual distortion criteria. For example:

Some components might be perceptually more important than others

Adapt coe�cients to �lter only harmonics that are perceptually

signi�cant

The gain factors are quantized to one of the four levels (0.5, 0.75, 1,
1.25) and sent as side information to the decoder
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given rate is achieved via a two stage process

In the �rst stage the squared prediction error is calculated for all
combinations of gain factors for di�erent P

Amongst these top S squared-prediction-error minimizing
combinations are retained
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Subjective evaluation

MUSHRA listening tests for coders operating at 24 kbps

15 listeners score on a scale of 0 (bad) to 100 (excellent)

Plots show average MUSHRA scores and 95% con�dence interval
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Summary

Currently used standard LTP sub-optimal for polyphonic signals

Cascading LTP �lters to optimally predict polyphonic signals proposed

Extending CLTP to MPEG AAC while taking perceptual distortion
into account proposed

Subjective and objective evaluations show substantial improvements

We conclude that such improved inter-frame redundancy removal
could bridge gap between low delay and long block length coders



Summary

Currently used standard LTP sub-optimal for polyphonic signals

Cascading LTP �lters to optimally predict polyphonic signals proposed

Extending CLTP to MPEG AAC while taking perceptual distortion
into account proposed

Subjective and objective evaluations show substantial improvements

We conclude that such improved inter-frame redundancy removal
could bridge gap between low delay and long block length coders



Summary

Currently used standard LTP sub-optimal for polyphonic signals

Cascading LTP �lters to optimally predict polyphonic signals proposed

Extending CLTP to MPEG AAC while taking perceptual distortion
into account proposed

Subjective and objective evaluations show substantial improvements

We conclude that such improved inter-frame redundancy removal
could bridge gap between low delay and long block length coders



Summary

Currently used standard LTP sub-optimal for polyphonic signals

Cascading LTP �lters to optimally predict polyphonic signals proposed

Extending CLTP to MPEG AAC while taking perceptual distortion
into account proposed

Subjective and objective evaluations show substantial improvements

We conclude that such improved inter-frame redundancy removal
could bridge gap between low delay and long block length coders



Summary

Currently used standard LTP sub-optimal for polyphonic signals

Cascading LTP �lters to optimally predict polyphonic signals proposed

Extending CLTP to MPEG AAC while taking perceptual distortion
into account proposed

Subjective and objective evaluations show substantial improvements

We conclude that such improved inter-frame redundancy removal
could bridge gap between low delay and long block length coders



Thank you for your attention



Questions?
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