Perceptually Optimized Cascaded Long Term Prediction of Polyphonic Signals for Enhanced MPEG-AAC

Tejaswi Nanjundaswamy and Kenneth Rose

Signal Compression Lab
Department of ECE
UCSB

October 21, 2011
1. Introduction to perceptual audio coding and inter-frame prediction

2. Cascaded long term prediction (CLTP)

3. Extending CLTP with perceptual optimization for MPEG AAC

4. Results
1 Introduction to perceptual audio coding and inter-frame prediction

2 Cascaded long term prediction (CLTP)

3 Extending CLTP with perceptual optimization for MPEG AAC

4 Results
Audio Coding

- Most audio signals contain periodic components
Audio Coding

- Most audio signals contain periodic components
- Transformation is typically used to exploit redundancies within a frame
Audio Coding

- But transform coding blocks of data separately results in perceptually undesirable artifacts at the edges
Audio Coding

- But transform coding blocks of data separately results in perceptually undesirable artifacts at the edges
- Solution: windowed overlapping frames
Audio Coding

- But transform coding blocks of data separately results in perceptually undesirable artifacts at the edges
- Solution: windowed overlapping frames
Audio Coding

- Coding in transform domain also facilitates psycho-acoustic redundancy removal
 - Eg: band wise noise masking

- This is captured in the distortion measure, Maximum Noise to Mask Ratio (MNMR)

\[
MNMR = \max_{\forall \text{bands}} \frac{\text{Quantization noise energy}}{\text{Masking threshold}}
\]

- Finally the quantization and coding parameters are selected to minimize this perceptual distortion via the well known two-loop search (TLS) based technique

- Techniques which provide substantially better performance than TLS are known [Aggarwal et al. 2006], but we retain TLS for simplicity and for a fair comparison with reference encoders which use TLS
Audio Coding

- Coding in transform domain also facilitates psycho-acoustic redundancy removal
 - Eg: band wise noise masking

- This is captured in the distortion measure, Maximum Noise to Mask Ratio (MNMR)

\[
MNMR = \max_{\forall \text{bands}} \frac{\text{Quantization noise energy}}{\text{Masking threshold}}
\]

- Finally the quantization and coding parameters are selected to minimize this perceptual distortion via the well known two-loop search (TLS) based technique

- Techniques which provide substantially better performance than TLS are known [Aggarwal et al. 2006], but we retain TLS for simplicity and for a fair comparison with reference encoders which use TLS
Audio Coding

- Coding in transform domain also facilitates psycho-acoustic redundancy removal
 - Eg: band wise noise masking

- This is captured in the distortion measure, Maximum Noise to Mask Ratio (MNMR)

 \[
 MNMR = \max_{\forall \text{bands}} \frac{\text{Quantization noise energy}}{\text{Masking threshold}}
 \]

- Finally the quantization and coding parameters are selected to minimize this perceptual distortion via the well known two-loop search (TLS) based technique

- Techniques which provide substantially better performance than TLS are known [Aggarwal et al. 2006], but we retain TLS for simplicity and for a fair comparison with reference encoders which use TLS
Audio Coding

- Coding in transform domain also facilitates psycho-acoustic redundancy removal
 - Eg: band wise noise masking

- This is captured in the distortion measure, Maximum Noise to Mask Ratio (MNMR)

\[
MNMR = \max_{\forall \text{bands}} \frac{\text{Quantization noise energy}}{\text{Masking threshold}}
\]

- Finally the quantization and coding parameters are selected to minimize this perceptual distortion via the well known two-loop search (TLS) based technique

- Techniques which provide substantially better performance than TLS are known [Aggarwal et al. 2006], but we retain TLS for simplicity and for a fair comparison with reference encoders which use TLS
Audio Coding

- Coding in transform domain also facilitates psycho-acoustic redundancy removal
 - Eg: band wise noise masking

- This is captured in the distortion measure, Maximum Noise to Mask Ratio (MNMR)

\[
\text{MNMR} = \max_{\forall \text{bands}} \frac{\text{Quantization noise energy}}{\text{Masking threshold}}
\]

- Finally the quantization and coding parameters are selected to minimize this perceptual distortion via the well known two-loop search (TLS) based technique

- Techniques which provide substantially better performance than TLS are known [Aggarwal et al. 2006], but we retain TLS for simplicity and for a fair comparison with reference encoders which use TLS
Audio Coding

Bitstream: Coded spectrum + Huffman codebook + Quantization step size
But temporal correlation usually extends beyond single frame
Audio Coding

- But temporal correlation usually extends beyond single frame
- Motivation to introduce the long term prediction (LTP) tool in MPEG AAC to exploit inter-frame redundancies [Ojanperä et al. 1999]
This tool predicts current frame from history

- The tool predicts the current frame from its history.
- Parameters are selected to minimize squared prediction error.
- The resulting optimal lag maximizes the normalized cross-correlation.
- Gain matches the energy.
This tool predicts current frame from history

With reference position indicated via a lag, and waveforms are matched via gain factor
MPEG AAC LTP

- This tool predicts current frame from history
- With reference position indicated via a lag, and waveforms are matched via gain factor
- The parameters are selected to minimize squared prediction error
The MPEG AAC LTP tool predicts the current frame from history with a reference position indicated via a lag, and waveforms are matched via a gain factor. The parameters are selected to minimize the squared prediction error. The resulting optimal lag maximizes the normalized cross-correlation.
This tool predicts current frame from history

With reference position indicated via a lag, and waveforms are matched via gain factor

The parameters are selected to minimize squared prediction error

The resulting optimal lag maximizes the normalized cross-correlation
This tool predicts current frame from history

With reference position indicated via a lag, and waveforms are matched via gain factor

The parameters are selected to minimize squared prediction error

The resulting optimal lag maximizes the normalized cross-correlation
MPEG AAC LTP

- This tool predicts current frame from history
- With reference position indicated via a lag, and waveforms are matched via gain factor
- The parameters are selected to minimize squared prediction error
- The resulting optimal lag maximizes the normalized cross-correlation
- This tool predicts current frame from history
- With reference position indicated via a lag, and waveforms are matched via gain factor
- The parameters are selected to minimize squared prediction error
- The resulting optimal lag maximizes the normalized cross-correlation
- And the gain matches the energy
The tool also provides a per band and per frame LTP activation flag.
The tool also provides a per band and per frame LTP activation flag.

- The per band flag is decided by comparing original with the prediction residue and selecting the lower energy option.
The tool also provides a per band and per frame LTP activation flag.

- The per band flag is decided by comparing original with the prediction residue and selecting the lower energy option.
- The per frame flag is set if estimated bit savings due to LTP greater than the side-information rate.
LTP effectively designed to work for monophonic audio signals (i.e., signals with one periodic component)
Motivation

- LTP effectively designed to work for monophonic audio signals (i.e., signals with one periodic component)
- But most audio signals are polyphonic
Motivation

- LTP effectively designed to work for monophonic audio signals (i.e., signals with one periodic component)
- But most audio signals are polyphonic
Motivation

- LTP effectively designed to work for monophonic audio signals (i.e., signals with one periodic component)
- But most audio signals are polyphonic
LTP effectively designed to work for monophonic audio signals (i.e., signals with one periodic component)

But most audio signals are polyphonic
Motivation

- LTP effectively designed to work for monophonic audio signals (i.e., signals with one periodic component)
- But most audio signals are polyphonic
- In principle such a mixture is itself periodic
Motivation

- LTP effectively designed to work for monophonic audio signals (i.e., signals with one periodic component)
- But most audio signals are polyphonic
- In principle such a mixture is itself periodic
- Unfortunately the new period is too long and equal to the least common multiple (LCM) of individual periods
Motivation

- LTP effectively designed to work for monophonic audio signals (i.e., signals with one periodic component)
- But most audio signals are polyphonic
- In principle such a mixture is itself periodic
- Unfortunately the new period is too long and equal to the least common multiple (LCM) of individual periods
- And real audio signals rarely remain stationary for so long
Motivation

- LTP is suboptimal for realistic scenario

 Does this mean the inter frame redundancy is lost when periodic components are mixed?

 Or, is there a better way of exploiting this redundancy?
Motivation

- LTP is suboptimal for realistic scenario
- Does this mean the inter frame redundancy is lost when periodic components are mixed?
- Or, is there a better way of exploiting this redundancy?
Motivation

- LTP is suboptimal for realistic scenario
- Does this mean the inter frame redundancy is lost when periodic components are mixed?
- Or, is there a better way of exploiting this redundancy?
Possible solutions

- Separate each component, predict individually and add
 - Not feasible for use in compression systems as currently known separation techniques are highly complex, inefficient or non-causal

- Prediction in frequency domain
 - Has been investigated and available in MPEG-2 AAC as a tool
 - Known to be as inefficient as the LTP tool described before
 - This tool’s inefficiency usually associated to the fact that data is highly downsampled in the MDCT domain
Possible solutions

- **Separate each component, predict individually and add**
 - Not feasible for use in compression systems as currently known separation techniques are highly complex, inefficient or non-causal

- **Prediction in frequency domain**
 - Has been investigated and available in MPEG-2 AAC as a tool
 - Known to be as inefficient as the LTP tool described before
 - This tool’s inefficiency usually associated to the fact that data is highly downsampled in the MDCT domain
Possible solutions

- Separate each component, predict individually and add
 - Not feasible for use in compression systems as currently known separation techniques are highly complex, inefficient or non-causal

- Prediction in frequency domain
 - Has been investigated and available in MPEG-2 AAC as a tool
 - Known to be as inefficient as the LTP tool described before
 - This tool’s inefficiency usually associated to the fact that data is highly downsampled in the MDCT domain
Possible solutions

- Separate each component, predict individually and add
 - Not feasible for use in compression systems as currently known separation techniques are highly complex, inefficient or non-causal

- Prediction in frequency domain
 - Has been investigated and available in MPEG-2 AAC as a tool
 - Known to be as inefficient as the LTP tool described before
 - This tool’s inefficiency usually associated to the fact that data is highly downsampled in the MDCT domain
Possible solutions

- Separate each component, predict individually and add
 - Not feasible for use in compression systems as currently known separation techniques are highly complex, inefficient or non-causal

- Prediction in frequency domain
 - Has been investigated and available in MPEG-2 AAC as a tool
 - Known to be as inefficient as the LTP tool described before
 - This tool’s inefficiency usually associated to the fact that data is highly downsampled in the MDCT domain
Possible solutions

- Separate each component, predict individually and add
 - Not feasible for use in compression systems as currently known separation techniques are highly complex, inefficient or non-causal

- Prediction in frequency domain
 - Has been investigated and available in MPEG-2 AAC as a tool
 - Known to be as inefficient as the LTP tool described before
 - This tool’s inefficiency usually associated to the fact that data is highly downsampled in the MDCT domain
Possible solutions

- Separate each component, predict individually and add
 - Not feasible for use in compression systems as currently known separation techniques are highly complex, inefficient or non-causal

- Prediction in frequency domain
 - Has been investigated and available in MPEG-2 AAC as a tool
 - Known to be as inefficient as the LTP tool described before
 - This tool’s inefficiency usually associated to the fact that data is highly downsampled in the MDCT domain
Outline

1. Introduction to perceptual audio coding and inter-frame prediction
2. Cascaded long term prediction (CLTP)
3. Extending CLTP with perceptual optimization for MPEG AAC
4. Results
Simple periodic signal can be characterized as $x[m] = x[m - N]$. More realistic characterization used hereafter for a periodic component is $x[m] = \alpha x[m - N] + \beta x[m - N + 1]$, which accounts for non-integral pitch periods and amplitude variation. Polyphonic audio signal is characterized as a mixture of such periodic signals and noise, i.e., $x[m] = \sum_{i=0}^{P-1} x_i[m] + w[m]$.
Periodic signal model

- Simple periodic signal can be characterized as $x[m] = x[m - N]$.
Simple periodic signal can be characterized as $x[m] = x[m - N]$. More realistic characterization used hereafter for a periodic component is $x[m] = \alpha x[m - N] + \beta x[m - N + 1]$, which accounts for non-integral pitch periods and amplitude variation.

Polyphonic audio signal is characterized as a mixture of such periodic signals and noise, i.e.,

$$x[m] = \sum_{i=0}^{P-1} x_i[m] + w[m]$$
Periodic signal model

- Simple periodic signal can be characterized as \(x[m] = x[m - N] \)
Periodic signal model

- Simple periodic signal can be characterized as $x[m] = x[m - N]$
- More realistic characterization used hereafter for a periodic component is $x[m] = \alpha x[m - N] + \beta x[m - N + 1]$, which accounts for non-integral pitch periods and amplitude variation
Periodic signal model

- Simple periodic signal can be characterized as $x[m] = x[m - N]$.
- More realistic characterization used hereafter for a periodic component is $x[m] = \alpha x[m - N] + \beta x[m - N + 1]$, which accounts for non-integral pitch periods and amplitude variation.
Periodic signal model

- Simple periodic signal can be characterized as \(x[m] = x[m - N] \)
- More realistic characterization used hereafter for a periodic component is \(x[m] = \alpha x[m - N] + \beta x[m - N + 1] \), which accounts for non-integral pitch periods and amplitude variation
Periodic signal model

- Simple periodic signal can be characterized as $x[m] = x[m - N]$
- More realistic characterization used hereafter for a periodic component is $x[m] = \alpha x[m - N] + \beta x[m - N + 1]$, which accounts for non-integral pitch periods and amplitude variation
Periodic signal model

- Simple periodic signal can be characterized as \(x[m] = x[m - N] \)
- More realistic characterization used hereafter for a periodic component is \(x[m] = \alpha x[m - N] + \beta x[m - N + 1] \), which accounts for non-integral pitch periods and amplitude variation
- Polyphonic audio signal is characterized as a mixture of such periodic signals and noise, i.e., \(x[m] = \sum_{i=0}^{P-1} \sum x_i[m] + w[m] \)
Periodic signal model

- Simple periodic signal can be characterized as $x[m] = x[m - N]$.
- More realistic characterization used hereafter for a periodic component is $x[m] = \alpha x[m - N] + \beta x[m - N + 1]$, which accounts for non-integral pitch periods and amplitude variation.
- Polyphonic audio signal is characterized as a mixture of such periodic signals and noise, i.e., $x[m] = \sum_{i=0}^{P-1} \sum x_i[m] + w[m]$.

![Image of periodic signal model](image)
For a audio file with single periodic component
For a audio file with single periodic component

The LTP filter \(H(z) = 1 - \alpha z^{-N} - \beta z^{-N+1} \) predicts perfectly by design.
For a audio file with single periodic component
The LTP filter \(H(z) = 1 - \alpha z^{-N} - \beta z^{-N+1} \) predicts perfectly by design
For a audio file with single periodic component

The LTP filter $H(z) = 1 - \alpha z^{-N} - \beta z^{-N+1}$ predicts perfectly by design

Encoding this residue at current frame results in compression gains
How to predict a file with multiple periodic components?

- A single LTP filter with period at LCM is ineffective as signal doesn’t remain stationary for such long durations.
How to predict a file with multiple periodic components?

A single LTP filter with period at LCM is ineffective as signal doesn’t remain stationary for such long durations.
File with multiple periodic components

- Instead let’s see the impact of first component’s LTP filter on different components
File with multiple periodic components

- Instead let’s see the impact of first component’s LTP filter on different components
- As per the design, it completely eliminates the first component
File with multiple periodic components

- Instead let’s see the impact of first component’s LTP filter on different components
- As per the design, it completely eliminates the first component
Instead let’s see the impact of first component’s LTP filter on different components

As per the design, it completely eliminates the first component

But it is of no help to the second component
File with multiple periodic components

- Instead let’s see the impact of first component’s LTP filter on different components
- As per the design, it completely eliminates the first component
- But it is of no help to the second component
Instead let’s see the impact of first component’s LTP filter on different components.

As per the design, it completely eliminates the first component.

But it is of no help to the second component.

However notice that second component retains its periodicity even after application of this filter.
Thus filtering with LTP filter designed for second component
Thus filtering with LTP filter designed for second component

Eliminates the second component as well
File with multiple periodic components

- Thus filtering with LTP filter designed for second component
- Eliminates the second component as well
Thus filtering with LTP filter designed for second component
Eliminates the second component as well
Adding this to first component’s new residue
File with multiple periodic components

- Thus filtering with LTP filter designed for second component
- Eliminates the second component as well
- Adding this to first component’s new residue
File with multiple periodic components

- Thus filtering with LTP filter designed for second component
- Eliminates the second component as well
- Adding this to first component’s new residue
- To get the new mixture residue
File with multiple periodic components

- Thus filtering with LTP filter designed for second component
- Eliminates the second component as well
- Adding this to first component’s new residue
- To get the new mixture residue
Thus the cascaded long term prediction filter (CLTP) filter forms the basis of this proposal

$$H_c(z) = \prod_{i=0}^{P-1} (1 - \alpha_i z^{-N_i} - \beta_i z^{-N_i+1})$$

Note that for this filter to be effective a history of only $\sum_{i=0}^{P-1} N_i$ samples is required.
Thus the cascaded long term prediction filter (CLTP) filter forms the basis of this proposal

\[H_c(z) = \prod_{i=0}^{P-1} (1 - \alpha_i z^{-N_i} - \beta_i z^{-N_i+1}) \]

Note that for this filter to be effective a history of only \(\sum_{i=0}^{P-1} N_i \) samples is required.
Extending CLTP to MPEG AAC

- How to adapt a period wise predicting CLTP filter to MPEG AAC which operates with overlapping frames

- How to extend CLTP filter so that it can be optimized for the perceptual distortion criteria set in MPEG AAC
How to adapt a period wise predicting CLTP filter to MPEG AAC which operates with overlapping frames

How to extend CLTP filter so that it can be optimized for the perceptual distortion criteria set in MPEG AAC
How to adapt a period wise predicting CLTP filter to MPEG AAC which operates with overlapping frames

How to extend CLTP filter so that it can be optimized for the perceptual distortion criteria set in MPEG AAC
Predicting with overlapping frames

- With overlapping frames, some information about first half of the current frame is available from the previous frame.
- But this is not useful for prediction within the current frame.
- So the entire current frame predicted from fully reconstructed previous samples.
- Which means a full block of data needs to be predicted.
- The standard LTP does this by finding a match for the entire current frame in history.
- But this is inefficient as now samples predicted from at least as far away as the frame length.
Predicting with overlapping frames

- With overlapping frames, some information about first half of the current frame is available from the previous frame.
- But this is not useful for prediction within the current frame.
- So the entire current frame predicted from fully reconstructed previous samples.
- Which means a full block of data needs to be predicted.
- The standard LTP does this by finding a match for the entire current frame in history.
- But this is inefficient as now samples predicted from at least as far away as the frame length.
Predicting with overlapping frames

- With overlapping frames, some information about first half of the current frame is available from the previous frame.
- But this is not useful for prediction within the current frame.
- So the entire current frame predicted from fully reconstructed previous samples.
- Which means a full block of data needs to be predicted.
- The standard LTP does this by finding a match for the entire current frame in history.
- But this is inefficient as now samples predicted from at least as far away as the frame length.
Predicting with overlapping frames

- With overlapping frames, some information about first half of the current frame is available from the previous frame.

- But this is not useful for prediction within the current frame.

- So the entire current frame predicted from fully reconstructed previous samples.

- Which means a full block of data needs to be predicted.

- The standard LTP does this by finding a match for the entire current frame in history.

- But this is inefficient as now samples predicted from at least as far away as the frame length.
Predicting with overlapping frames

- With overlapping frames, some information about first half of the current frame is available from the previous frame.
- But this is not useful for prediction within the current frame.
- So the entire current frame predicted from fully reconstructed previous samples.
- Which means a full block of data needs to be predicted.
- The standard LTP does this by finding a match for the entire current frame in history.
- But this is inefficient as now samples predicted from at least as far away as the frame length.
With overlapping frames, some information about first half of the current frame is available from the previous frame.

But this is not useful for prediction within the current frame.

So the entire current frame predicted from fully reconstructed previous samples.

Which means a full block of data needs to be predicted.

The standard LTP does this by finding a match for the entire current frame in history.

But this is inefficient as now samples predicted from at least as far away as the frame length.
We instead retain CLTP filter in synthesis form \[1/H_c(z) \], and predict assuming residue to be zero.
Predicting with overlapping frames

- We instead retain CLTP filter in synthesis form \([1/H_c(z)]\), and predict assuming residue to be zero.
- This is effectively using most recently reconstructed samples recursively to predict the entire frame.
We instead retain CLTP filter in synthesis form \([1/H_c(z)]\), and predict assuming residue to be zero.

This is effectively using most recently reconstructed samples recursively to predict the entire frame.
We instead retain CLTP filter in synthesis form \[\frac{1}{H_c(z)} \], and predict assuming residue to be zero.

This is effectively using most recently reconstructed samples recursively to predict the entire frame.
Predicting with overlapping frames

- We instead retain CLTP filter in synthesis form \[\frac{1}{H_c(z)} \], and predict assuming residue to be zero.
- This is effectively using most recently reconstructed samples recursively to predict the entire frame.
Predicting with overlapping frames

- We instead retain CLTP filter in synthesis form \(1/H_c(z) \), and predict assuming residue to be zero.
- This is effectively using most recently reconstructed samples recursively to predict the entire frame.
Predicting with overlapping frames

- We instead retain CLTP filter in synthesis form \[1/H_c(z) \], and predict assuming residue to be zero.
- This is effectively using most recently reconstructed samples recursively to predict the entire frame.
Predicting with overlapping frames

- We instead retain CLTP filter in synthesis form \[1/H_c(z) \], and predict assuming residue to be zero.
- This is effectively using most recently reconstructed samples recursively to predict the entire frame.
Derivation of the CLTP filter demonstrated that it can be practically very effective.

But this critically depends on suitable parameter estimation, which accounts for perceptual distortion criteria.

This achieved in two stages to keep complexity in check:
- In first stage a large subset estimated backward adaptively from previously reconstructed samples:
 - Assumes signal to be locally stationary
 - Reduces side information rate
- In the next stage, parameters refined to account for perceptual distortion
CLTP filter parameter estimation

• Derivation of the CLTP filter demonstrated that it can be practically very effective

• But this critically depends on suitable parameter estimation, which accounts for perceptual distortion criteria

• This achieved in two stages to keep complexity in check
 • In first stage a large subset estimated backward adaptively from previously reconstructed samples
 • Assumes signal to be locally stationary
 • Reduces side information rate
 • In the next stage, parameters refined to account for perceptual distortion
Derivation of the CLTP filter demonstrated that it can be practically very effective.

But this critically depends on suitable parameter estimation, which accounts for perceptual distortion criteria.

This achieved in two stages to keep complexity in check:

- In first stage a large subset estimated backward adaptively from previously reconstructed samples:
 - Assumess signal to be locally stationary
 - Reduces side information rate

- In the next stage, parameters refined to account for perceptual distortion
Derivation of the CLTP filter demonstrated that it can be practically very effective.

But this critically depends on suitable parameter estimation, which accounts for perceptual distortion criteria.

This achieved in two stages to keep complexity in check:

- In first stage a large subset estimated backward adaptively from previously reconstructed samples:
 - Assumes signal to be locally stationary
 - Reduces side information rate

- In the next stage, parameters refined to account for perceptual distortion
Derivation of the CLTP filter demonstrated that it can be practically very effective.

But this critically depends on suitable parameter estimation, which accounts for perceptual distortion criteria.

This achieved in two stages to keep complexity in check:

- In first stage a large subset estimated backward adaptively from previously reconstructed samples:
 - Assumes signal to be locally stationary
 - Reduces side information rate

- In the next stage, parameters refined to account for perceptual distortion.
Derivation of the CLTP filter demonstrated that it can be practically very effective.

But this critically depends on suitable parameter estimation, which accounts for perceptual distortion criteria.

This achieved in two stages to keep complexity in check:

- In first stage a large subset estimated backward adaptively from previously reconstructed samples:
 - Assumes signal to be locally stationary
 - Reduces side information rate

- In the next stage, parameters refined to account for perceptual distortion
Backward adaptive parameter estimation

- Underlying observation for parameter estimation: Periodicity of a component retained after linear filtering
Backward adaptive parameter estimation

- Underlying observation for parameter estimation: Periodicity of a component retained after linear filtering
Thus, parameters of jth filter of the cascade are estimated in the residue after filtering with all the others:

$$\prod_{i, i \neq j} (1 - \alpha_i z^{-N_i} - \beta_i z^{-N_i+1})$$

Estimating parameters of one filter $(1 - \alpha_j z^{-N_j} - \beta_j z^{-N_j+1})$ simply follows the well known LTP problem.

Each filter in the cascade is estimated this way in a loop until convergence.

As overall prediction error is monotone non-increasing at each step, convergence is guaranteed.
Thus, parameters of jth filter of the cascade are estimated in the residue after filtering with all the others $\prod_{i, i \neq j} (1 - \alpha_i z^{-N_i} - \beta_i z^{-N_i+1})$.

Estimating parameters of one filter $(1 - \alpha_j z^{-N_j} - \beta_j z^{-N_j+1})$ simply follows the well known LTP problem.

Each filter in the cascade is estimated this way in a loop until convergence.

As overall prediction error is monotone non-increasing at each step, convergence is guaranteed.
Thus, parameters of jth filter of the cascade are estimated in the residue after filtering with all the others $\Pi_{i, i \neq j} (1 - \alpha_i z^{-N_i} - \beta_i z^{-N_i+1})$

Estimating parameters of one filter $(1 - \alpha_j z^{-N_j} - \beta_j z^{-N_j+1})$ simply follows the well known LTP problem

Each filter in the cascade is estimated this way in a loop until convergence

As overall prediction error is monotone non-increasing at each step, convergence is guaranteed
Thus, parameters of jth filter of the cascade are estimated in the residue after filtering with all the others $\prod_{i, i \neq j} (1 - \alpha_i z^{-N_i} - \beta_i z^{-N_i+1})$

Estimating parameters of one filter $(1 - \alpha_j z^{-N_j} - \beta_j z^{-N_j+1})$ simply follows the well known LTP problem

Each filter in the cascade is estimated this way in a loop until convergence

As overall prediction error is monotone non-increasing at each step, convergence is guaranteed
Backward adaptive parameter estimation

- Given the filter, residue in the previously reconstructed data generated to decide band wise prediction activation flag
Backward adaptive parameter estimation

- Given the filter, residue in the previously reconstructed data generated to decide band-wise prediction activation flag
 - This flag is similar to the one described in standard LTP
 - But estimated backward adaptively as signal assumed to be locally stationary
 - Also psycho-acoustic masking thresholds are taken into account
Backward adaptive parameter estimation

Given the filter, residue in the previously reconstructed data generated to decide band wise prediction activation flag

- This flag is similar to the one described in standard LTP
- But estimated backward adaptively as signal assumed to be locally stationary
- Also psycho-acoustic masking thresholds are taken into account

- Prediction retained in bands where signal energy is above masking thresholds (as only those will be encoded) and bands where prediction is useful
Given the filter, residue in the previously reconstructed data generated to decide band wise prediction activation flag

- This flag is similar to the one described in standard LTP
- But estimated backward adaptively as signal assumed to be locally stationary
- Also psycho-acoustic masking thresholds are taken into account

Prediction retained in bands where signal energy is above masking thresholds (as only those will be encoded) and bands where prediction is useful
Backward adaptive parameter estimation

- Given the filter, residue in the previously reconstructed data generated to decide band wise prediction activation flag
 - This flag is similar to the one described in standard LTP
 - But estimated backward adaptively as signal assumed to be locally stationary
 - Also psycho-acoustic masking thresholds are taken into account

- Prediction retained in bands where signal energy is above masking thresholds (as only those will be encoded) and bands where prediction is useful
Backward adaptive parameter estimation

- Given the filter, residue in the previously reconstructed data generated to decide band wise prediction activation flag
 - This flag is similar to the one described in standard LTP
 - But estimated backward adaptively as signal assumed to be locally stationary
 - Also psycho-acoustic masking thresholds are taken into account

- Prediction retained in bands where signal energy is above masking thresholds (as only those will be encoded) and bands where prediction is useful
Backward adaptive parameter estimation

- Given the filter, residue in the previously reconstructed data generated to decide band wise prediction activation flag
 - This flag is similar to the one described in standard LTP
 - But estimated backward adaptively as signal assumed to be locally stationary
 - Also psycho-acoustic masking thresholds are taken into account

- Prediction retained in bands where signal energy is above masking thresholds (as only those will be encoded) and bands where prediction is useful
Backward adaptive parameter estimation

- Given the filter, residue in the previously reconstructed data generated to decide band wise prediction activation flag
 - This flag is similar to the one described in standard LTP
 - But estimated backward adaptively as signal assumed to be locally stationary
 - Also psycho-acoustic masking thresholds are taken into account

- Prediction retained in bands where signal energy is above masking thresholds (as only those will be encoded) and bands where prediction is useful
Accounting perceptual distortion

- Amongst CLTP parameters, \(N_i \) and part of \(\alpha_i, \beta_i \) which capture the non-integral pitch period are dependent only on a component’s waveform and not impacted by perceptual distortion.

- Thus we break \(\alpha_i, \beta_i \) and introduce gain factors \(G_i \) to form an updated CLTP filter:

\[
H_c(z) = \prod_{i=0}^{P-1} (1 - G_i(\alpha_i z^{-N_i} + \beta_i z^{-N_i+1}))
\]

- These gains adapt each periodic component’s filter according to the perceptual distortion criteria. For example:
 - Some components might be perceptually more important than others
 - Adapt coefficients to filter only harmonics that are perceptually significant

- The gain factors are quantized to one of the four levels (0.5, 0.75, 1, 1.25) and sent as side information to the decoder.
Accounting perceptual distortion

- Amongst CLTP parameters, \(N_i \) and part of \(\alpha_i, \beta_i \) which capture the non-integral pitch period are dependent only on a component’s waveform and not impacted by perceptual distortion.

- Thus we break \(\alpha_i, \beta_i \) and introduce gain factors \(G_i \) to form an updated CLTP filter:

\[
H_c(z) = \prod_{i=0}^{P-1} (1 - G_i(\alpha_i z^{-N_i} + \beta_i z^{-N_i+1}))
\]

- These gains adapt each periodic component’s filter according to the perceptual distortion criteria. For example:
 - Some components might be perceptually more important than others.
 - Adapt coefficients to filter only harmonics that are perceptually significant.

- The gain factors are quantized to one of the four levels (0.5, 0.75, 1, 1.25) and sent as side information to the decoder.
Accounting perceptual distortion

- Amongst CLTP parameters, \(N_i\) and part of \(\alpha_i\), \(\beta_i\) which capture the non-integral pitch period are dependent only on a component’s waveform and not impacted by perceptual distortion.

- Thus we break \(\alpha_i\), \(\beta_i\) and introduce gain factors \(G_i\) to form an updated CLTP filter:

\[
H_c(z) = \prod_{i=0}^{P-1} (1 - G_i(\alpha_i z^{-N_i} + \beta_i z^{-N_i+1}))
\]

- These gains adapt each periodic component’s filter according to the perceptual distortion criteria. For example:
 - Some components might be perceptually more important than others
 - Adapt coefficients to filter only harmonics that are perceptually significant

- The gain factors are quantized to one of the four levels (0.5, 0.75, 1, 1.25) and sent as side information to the decoder.
Accounting perceptual distortion

- Amongst CLTP parameters, \(N_i \) and part of \(\alpha_i, \beta_i \) which capture the non-integral pitch period are dependent only on a component’s waveform and not impacted by perceptual distortion.

- Thus we break \(\alpha_i, \beta_i \) and introduce gain factors \(G_i \) to form an updated CLTP filter

\[
H_c(z) = \prod_{i=0}^{P-1} \left(1 - G_i(\alpha_i z^{-N_i} + \beta_i z^{-N_i+1}) \right)
\]

- These gains adapt each periodic component’s filter according to the perceptual distortion criteria. For example:
 - Some components might be perceptually more important than others
 - Adapt coefficients to filter only harmonics that are perceptually significant

- The gain factors are quantized to one of the four levels (0.5, 0.75, 1, 1.25) and sent as side information to the decoder.
Accounting perceptual distortion

- Amongst CLTP parameters, N_i and part of α_i, β_i which capture the non-integral pitch period are dependent only on a component’s waveform and not impacted by perceptual distortion.

- Thus we break α_i, β_i and introduce gain factors G_i to form an updated CLTP filter

\[
H_c(z) = \prod_{i=0}^{P-1} (1 - G_i(\alpha_i z^{-N_i} + \beta_i z^{-N_i+1}))
\]

- These gains adapt each periodic component’s filter according to the perceptual distortion criteria. For example:
 - Some components might be perceptually more important than others
 - Adapt coefficients to filter only harmonics that are perceptually significant

- The gain factors are quantized to one of the four levels (0.5, 0.75, 1, 1.25) and sent as side information to the decoder.
Accounting perceptual distortion

- Amongst CLTP parameters, N_i and part of α_i, β_i which capture the non-integral pitch period are dependent only on a component’s waveform and not impacted by perceptual distortion.

- Thus we break α_i, β_i and introduce gain factors G_i to form an updated CLTP filter

$$H_c(z) = \prod_{i=0}^{P-1} \left(1 - G_i(\alpha_i z^{-N_i} + \beta_i z^{-N_i+1}) \right)$$

- These gains adapt each periodic component’s filter according to the perceptual distortion criteria. For example:
 - Some components might be perceptually more important than others
 - Adapt coefficients to filter only harmonics that are perceptually significant

- The gain factors are quantized to one of the four levels (0.5, 0.75, 1, 1.25) and sent as side information to the decoder.
Accounting perceptual distortion

- The estimation of gain factors to minimize perceptual distortion for a given rate is achieved via a two stage process.

- In the first stage the squared prediction error is calculated for all combinations of gain factors for different P.

- Amongst these top S squared-prediction-error minimizing combinations are retained.
Accounting perceptual distortion

- The estimation of gain factors to minimize perceptual distortion for a given rate is achieved via a two stage process.

- In the first stage the squared prediction error is calculated for all combinations of gain factors for different P.

- Amongst these top S squared-prediction-error minimizing combinations are retained.
The estimation of gain factors to minimize perceptual distortion for a given rate is achieved via a two stage process.

In the first stage the squared prediction error is calculated for all combinations of gain factors for different P.

Amongst these top S squared-prediction-error minimizing combinations are retained.
In the second stage, each of these S survivors rate distortion (RD) evaluated via TLS.
In the second stage, each of these S survivors rate distortion (RD) evaluated via TLS.
Accounting perceptual distortion

- In the second stage, each of these S survivors rate distortion (RD) evaluated via TLS.
- To find per frame flag, the original frame also RD evaluated.
Accounting perceptual distortion

- In the second stage, each of these S survivors rate distortion (RD) evaluated via TLS.
- To find per frame flag, the original frame also RD evaluated.
- Parameters resulting in minimum distortion for a given rate chosen.

![Diagram showing the process of accounting perceptual distortion](image)
Outline

1. Introduction to perceptual audio coding and inter-frame prediction
2. Cascaded long term prediction (CLTP)
3. Extending CLTP with perceptual optimization for MPEG AAC
4. Results
Results

- The following three low delay coders compared in our evaluations
 - MPEG reference encoder with no LTP
 - MPEG reference encoder with standard LTP
 - Proposed encoder with CLTP

- Test data set includes real polyphonic audio samples (44.1 / 48 kHz, single channel) from the MPEG standard and EBU SQAM
Results

- The following three low delay coders compared in our evaluations:
 - MPEG reference encoder with no LTP
 - MPEG reference encoder with standard LTP
 - Proposed encoder with CLTP

- Test data set includes real polyphonic audio samples (44.1 / 48 kHz, single channel) from the MPEG standard and EBU SQAM
Objective evaluation results

- Average MNMR (AMNMR) versus bitrate
Objective evaluation results

- **Average MNMR (AMNMR) versus bitrate**

![Graphs showing AMNMR in dB versus bitrate for grandpiano, guitar sarasate, and tubular bells.](image-url)
Objective evaluation results

- **Average MNMR (AMNMR) versus bitrate**

![Graphs showing AMNMR versus bitrate for different files and conditions.](image)
Objective evaluation results

- Average MNMR (AMNMR) versus bitrate
Subjective evaluation

- MUSHRA listening tests for coders operating at 24 kbps
- 15 listeners score on a scale of 0 (bad) to 100 (excellent)
- Plots show average MUSHRA scores and 95% confidence interval
Subjective evaluation results

[Bar charts showing evaluation results for different conditions (ref, anc, NoLTP, LTP, CLTP) across different categories (grandpiano, guitarsarasate, tubularbells).]
Subjective evaluation results
Subjective evaluation results
Summary

- Currently used standard LTP sub-optimal for polyphonic signals
- Cascading LTP filters to optimally predict polyphonic signals proposed
- Extending CLTP to MPEG AAC while taking perceptual distortion into account proposed
- Subjective and objective evaluations show substantial improvements
- We conclude that such improved inter-frame redundancy removal could bridge gap between low delay and long block length coders
Currently used standard LTP sub-optimal for polyphonic signals

Cascading LTP filters to optimally predict polyphonic signals proposed

Extending CLTP to MPEG AAC while taking perceptual distortion into account proposed

Subjective and objective evaluations show substantial improvements

We conclude that such improved inter-frame redundancy removal could bridge gap between low delay and long block length coders
Summary

- Currently used standard LTP sub-optimal for polyphonic signals
- Cascading LTP filters to optimally predict polyphonic signals proposed
- Extending CLTP to MPEG AAC while taking perceptual distortion into account proposed
- Subjective and objective evaluations show substantial improvements
- We conclude that such improved inter-frame redundancy removal could bridge gap between low delay and long block length coders
Summary

- Currently used standard LTP sub-optimal for polyphonic signals
- Cascading LTP filters to optimally predict polyphonic signals proposed
- Extending CLTP to MPEG AAC while taking perceptual distortion into account proposed
- Subjective and objective evaluations show substantial improvements
- We conclude that such improved inter-frame redundancy removal could bridge gap between low delay and long block length coders
Currently used standard LTP sub-optimal for polyphonic signals

Cascading LTP filters to optimally predict polyphonic signals proposed

Extending CLTP to MPEG AAC while taking perceptual distortion into account proposed

Subjective and objective evaluations show substantial improvements

We conclude that such improved inter-frame redundancy removal could bridge gap between low delay and long block length coders
Thank you for your attention
Questions?