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Virtually all audio signals contain naturally occurring periodic sounds
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Audio Coding

Coding in transform domain also facilitates psycho-acoustic
redundancy removal

E.g., band wise noise masking

This is captured in the distortion measure, Maximum Noise to Mask
Ratio (MNMR)

MNMR = max
8 bands

Quantization noise energy

Masking threshold

Selecting quantization and coding parameters to minimize this
perceptual distortion achieves band wise noise masking (e.g., via two
loop search (TLS), Trellis optimization [Aggarwal et al. 2006], and
others)
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Long term prediction (LTP) or pitch prediction

If a signal contains only one periodic component (with periodicity
x(t) = Gx(t �L))...

Efficient prediction can be achieved via the LTP filter
e(t) = x(t)�Gx(t �L)

x(t) = Gx(t � L)

y1[m] = x1[m] ⇤ h1[m]
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MPEG AAC LTP

Clearly encoding the residue after LTP filtering leads to compression
gains

Thus, MPEG AAC has adopted this scheme to exploit inter-frame
redundancies [Ojanperä et al. 1999]
Wherein, the LTP tool predicts the whole of current frame from history
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residue
The per frame flag decides if LTP should be used at all
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LTP is clearly designed for stationary periodic signals

But speech and vocals often have pitch variations
Employing simple LTP for such signals causes accumulation of error
over a frame
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Prior Work

Pitch variations is a well known problem in the field speech
compression

[Yong and Gersho 1991] proposed updating the pitch periods at small
regular intervals
[W. B. Kleijn et. al. 1992, 1995] proposed general time varying lags
and waveform interpolative coding

Using time-warping to improve the efficiency of MDCT in audio coders
was recently proposed in the recent USAC standard

Here the warping factor is updated at frequent regular intervals
This effectively accommodates pitch variations within a frame, but the
problem of exploiting correlation across frames with pitch variation is
not addressed

Recently we have proposed a solution to the problem of exploiting
long term correlations in polyphonic signals [Nanjundaswamy and Rose
2011]
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Proposed approach for accommodating pitch variations

We propose accommodating pitch variations via time-warping based
on parametric models

This ensures very marginal increase in side information rate

The simplest model for time-warping we propose is modifying the LTP
filter to have a constant ‘geometric’ warping factor,

e(t) = x(t)�Gx

✓
t �L
A

◆

= x(t)�Gx(t �L (t,L,A))

where L (t,L,A) = (L+ t(A�1))/A is the time varying lag function
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Accommodating pitch variations

For discrete-time signals we allow non-integer lags approximated via
linear interpolation,

e[m] = x [m]�GF (m,L,A)x [m�bL (m,L,A)c�1]�
G(1�F (m,L,A))x [m�bL (m,L,A)c]

where
L (m,L,A) = (L+m(A�1))/A is the time varying lag
F (m,L,A) = L (m,L,A)�bL (m,L,A)c is the fractional part of the
lag
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Accommodating pitch variations

For predicting a frame, the synthesis filter given below is used, while
assuming the residue in the current frame to be zero, i.e.,

x̃ [m] = GF (m,L,A)x̃ [m�bL (m,L,A)c�1]+
G(1�F (m,L,A))x̃ [m�bL (m,L,A)c]

The following example illustrates the effectiveness of the proposed
approach in accommodating pitch variations
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Parameters

To simplify the parameter search and transmission as side information
all the parameters are uniformly quantized

G is limited to the range [G
min

,G
max

] and uniformly quantized with
NG levels

Non-integer L is allowed, with its fractional value uniformly quantized
with NL levels

As warping parameter A was observed to be sensitive to quantization
errors, it is derived from the secondary parameter, �L, as,

A =
�L
L

+1

which ensures AL = L+�L, i.e., the pitch period L increases by �L
after warping
�L is limited to the range [�L

min

,�L
max

] and uniformly quantized
with N�L levels
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Parameter estimation

For MPEG AAC, it is critical that the three parameters G, L, �L are
estimated while accounting the perceptual distortion criteria
A three stage parameter estimation technique is employed to tackle
this at an acceptable complexity

In the first stage, a single-tap open-loop LTP filter is estimated

e[m] = x [m]�Gx [m�L]

Well known mean squared prediction error minimizing LTP parameter
estimation technique employed with a lag search range of [L

min

, L
max

]

This forms the preliminary set of parameters G, L, and �L= 0 (A= 1)
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Parameter estimation

In the second stage the preliminary parameters are refined to minimize
the closed-loop prediction error

To keep complexity in check, only a small neighborhood around the
initial parameters are tried
Specifically the neighborhood is defined as, PG, PL, P�L number of
choices in the quantized domain with preliminary parameters from first
stage, G, L, and �L = 0, at the center

Amongst the PGPLP�L choices of parameter sets, only the top S

closed-loop prediction error minimizing parameter sets are retained

The per-band prediction activating flags (similar to the standard LTP
tool) are also retained and calculated for each of the S “survivors”,
thus generating S prediction residues for the current frame
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In the final stage, each of these S survivors rate distortion (RD)
evaluated via TLS

To find per frame flag, the original frame also RD evaluated
Parameters resulting in minimum distortion for a given rate chosen
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Final bitstream

The lag, L , is differentially encoded if the difference with previous
frame is within the range [L0

min

, L0
max

]

The prediction side information finally includes
1 bit to indicate per frame prediction activation flag
dlog

2

(NG)ebits to indicate gain
dlog

2

(N�L)e bits to indirectly indicate ‘geometric’ warping factor
1 bit prediction activation flag per band
1 bit to indicate if the lag is differentially coded
If being differentially coded, dlog

2

(NL(L0
max

�L0
min

))e bits to indicate
the difference
Else dlog

2

(NL(Lmax

�L
min

))e bits to indicate the actual lag

This prediction side information, along with the core AAC bitstream,
forms the final bitstream.
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Results

The following three low delay coders compared in our evaluations
MPEG reference encoder with no LTP
MPEG reference encoder with the standard LTP tool
Proposed encoder with the warped LTP filter

Test data set includes speech and vocal samples (44.1 / 48 kHz, single
channel) from the MPEG standard and EBU SQAM
The various parameters were set as

G
min

= 0.57, G
max

= 1.2, NG = 256
�L

min

=�2, �L
max

= 1.75, N�L = 16
L

min

= 23, L
max

= 800, NL = 8, L0
min

=�4, L0
max

= 3.875
PL = 32, PG = 16, P�L = 16, and S = 64
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Objective evaluation results

Signal to prediction residue energy ratio (prediction gain) used as a
measure for objective evaluation.
Prediction gain improvements of the proposed coder over the standard
LTP based coder calculated in the range of 20 to 40 kbps.
Plots show average prediction gain improvement at different bit-rates
for each subset
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Subjective evaluation results

MUSHRA listening tests for coders operating at 32 kbps
15 listeners scored on a scale of 0 (bad) to 100 (excellent)
Plots show average MUSHRA scores and 95% confidence interval
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Summary

Currently used standard LTP sub-optimal when pitch variations occur
’Geometric’ warping of periodicity proposed for accommodating pitch
variations
Proposed a three stage parameter estimation technique, which takes
perceptual distortion criteria of MPEG AAC into account
Subjective and objective evaluations demonstrate the effectiveness of
the proposed approach

Future work include, further optimization of parameter estimation and
side information rate, other parametric models for time-warping, and
handling polyphonic signals with pitch varying periodic components

We conclude that such improved inter-frame redundancy removal will
be an important bridge for a step towards truly unified speech and
audio coding
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Thank you for your attention
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