

BIDIRECTIONAL CASCADED LONG TERM PREDICTION FOR FRAME LOSS CONCEALMENT IN POLYPHONIC AUDIO SIGNALS

Tejaswi Nanjundaswamy and Kenneth Rose

Signal Compression Lab, Department of ECE, University of California Santa Barbara

Cascaded Long Term Prediction for Frame Loss Concealment

- Preliminary parameters are estimated from the past samples via a recursive technique
- Parameters of *j*th filter $(1 \alpha_j z^{-N_j} \beta_j z^{-N_j+1})$ are estimated in the residue of filtering with all the others $\prod_{\forall i,i\neq j} (1 - \alpha_i z^{-N_i} - \beta_i z^{-N_i+1})$, via the well known technique for LTP. • Each filter in the cascade is estimated this way in a loop until convergence.
- Using only the past samples for the filter parameter estimate doesn't explain future samples correctly

• So CLTP filter updated with multiplicative gain factors

$$H_{c}(z) = \prod_{i=0}^{P-1} (1 - G_{i}(\alpha_{i}z^{-N_{i}} + \beta_{i}z^{-N_{i}+1})).$$

- The gain factors are adjusted to minimize squared prediction error in the future samples. • As cost function has complex dependency on these factors, a generic quasi-Newton opti-
- mization called L-BFGS method is used along with backtracking line search for step sizes.

- Simply predicting from past samples doesn't ensure smooth transition into the available future samples.
- Thus lost frame samples are predicted in reverse direction from future samples with different set of CLTP gain factors.

• Final reconstruction of lost frame is a weighted average of predicted samples in each direction.

• For use in MPEG AAC, the reconstructed frame is transformed to MDCT domain and energy smoothing performed in each band *I*, via a gain factor given as,

Evaluations

- MPEG reference AAC-LD encoder used to generate 64 kbps bitstreams and the following decoders compared,
- Reference decoder with no frame loss.
- Reference decoder with subband domain linear prediction based FLC (SBP-FLC).
- Reference decoder with MDCT domain tonal interpolation FLC (MDCT-FLC).
- Reference decoder with the proposed CLTP based FLC (CLTP-FLC).
- Testing data-set: 6 audio files, 4s each, mono, 44.1/48 kHz.
- Frame loss was at the rate of 10% and random.
- Objective evaluation results of Segmental SNR in dB.

Filename	SBP-FLC	MDCT-FLC
Piano	-3.16	-0.67
Guitar	-1.95	0.19
Harp	-3.59	-1.77
Bells	-2.08	0.06
Mfv	2.27	0.34
Mozart	-2.03	1.22
Average	-1.76	-0.11

with average and 95% confidence interval).

Conclusions

- Currently used FLC techniques sub-optimal for polyphonic audio signals.
- Bidirectional cascaded LTP proposed for significantly improved FLC, which takes into account all the available information.
- Subjective and objective evaluations substantiate these improvements.
- Future directions include developing low complexity variant and handling burst frame losses.

5.10
7.15
3.80
4.26
11.53
8.4
6.71 (+6.82)

CLTP-FLC