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‘ Introduction

= Huge image databases are = = M pm
central in many apps. e.g. = Eomavp
bio-imaging LT

= Images rep. by high-dim. g N O"
features = s
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= Content-based retrieval is
Inevitable

= Fast similarity search needed
for quick navigation

http://www.cs.cmu.edu/~juny/Prof/images/CBIR.jpg




Image Features and Distances

Popular image features
- color histogram
- texture descriptors
- shape descriptors

Common similarity measure — Euclidean
distance (not perceptually optimal)

Mahalanobis distances (thru’ relevance
feedback) possible



‘ Storage on Hard-disks

= High-dim. features stored
on a hard-drive

= Access thru’ blocks/pages
(fixed size)

= Sequential/serial or random
access

= Random IOs more
expensive per page

From Computer Desktop BEncyclopedia
= 2005 The Computer Language Co. Ine.

= Every access = 1 random
O + rest serial |I0s




Multi-dimensional Indexes

Tree-like indexes efficient in low dimensions
e.g. R-tree

‘Curse of dimensionality’ hinders R-trees etc.,
creates large no. of random |Os

Scan-like methods more effective at high
dimensions

Vector Approximation (VA)-File popular



VA-File based Indexing

Quantize each
dimension uniformly

Quantize each element
of data-set
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VA-File based Indexing

a

Quantize each
dimension uniformly

Quantize each element
of data-set

Create approximation
file
store quantization bit-strings for
each element
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VA-File —Query processing

Read approximation file

Establish lower and upper distance
bounds to occupied cells

Eliminate irrelevant cells

Access all survivors in order of i

lower bounds ol %

If k" lowest distance found so far,

less than next lower bound, °
Query

STOP (kNNs found)
Else read next survivor.




VQ/Clustering for Indexing

VQ is optimal in compression
o smaller preprocessing storage
Similar feature vectors stored together

o each cluster has several candidate vectors
0 better use of page access structure

Extensively used in approx NN search

Cluster-distance bounding for exact NN
o bounds using MBRs and MBSs are loose



Bounding Query-Cluster Distance

* d(y, X,)=min d(X,y) Cluster X,
Separating
«d(x,y) = d(y,H) + d(x,H) o © Hyperplane H
oo X
o
— min d(x,y) = d(y,H) + min d(x,H)
= d(y, X) 2 d(y,H) + d(X;,,H)
@)
y QUERY

Distance-to-cluster > Query-Hyperplane distance + Cluster-Hyperplane Distance

(“Support”)
Support evaluated offline and stored
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‘ Cluster Distance Bounding

BOUNDING
RECTANGLE




Adaptive Cluster Distance Bounding

® < ORONOI
® @ ([USTER2

e ® - ‘\%, e, ®

QUERY

Bound distance with multiple hyperplanes
0 use tightest distance bound

Cluster boundaries are linear
o use them as (separating) hyperplanes
o no need to store hyperplanes
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Proposed Indexing Scheme

Cluster data-set through VQ/K-means

0 “nearest neighbor” partitioning for linear boundaries
0 evaluate “offline” and store cluster supports

Bound query-cluster distance with
hyperplane bound

Retrieve clusters in order of distance
IF KNN distance so far < distance to next cluster

STOP (kNNs found)
ELSE read next cluster (till all clusters read)
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Experiments & Results

Data-sets - AERIAL (60 dim, 275K)

- BIO-RETINA (62 dim, 208K)
Clustering with GLA/K-means
No. of clusters varied (20 — 600)
VA-File Quantization varied (3-8 bits/dim)
Page size — 8kB
2D Performance Metric —

(Random IOs ,Serial 10s)
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10 Performance - AERIAL
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10 Performance — BIO-RETINA
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Pre-processing Storage (BIO-RETINA)
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Computational Costs — BIO-RETINA
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Results & Future Work

Real data-sets exhibit significant
dependencies across dimensions

VQ/Clustering exploits correlations

Proposed hyperplane bound is tight and
provides for efficient spatial filtering

Huge gains in IO complexity possible over
VA-File and MBS bounds

To be extended towards Mahalanobis
distances and relevance feedback...
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