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Coding of Correlated Sources …Coding of Correlated Sources …

• Early interest in source coding with side-info (Slepian-
Wolf (1973), Wyner-Ziv (1976))

• Other flavors: multi-terminal source coding, distributed 
source coding

• Applications: distributed compression in sensor networks 

(DISCUS (1999), Network VQ (2001))
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Coding Correlated Sources for StorageCoding Correlated Sources for Storage

• New setting: Storage Media

• Joint encoding/compression/storage of sources

• Selective retrieval of sources

Fusion Storage
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Minimizing Storage RateMinimizing Storage Rate

• Compress all sources together

- minimizes storage

Lossless Coding ⇒ Rs=H(X1,…,XM)

• Retrieves all stored data for all queries

- high retrieval time!

Rr=Rs=H(X1,…,XM) 
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Minimizing Retrieval RateMinimizing Retrieval Rate

• Compress each subset separately

- minimizes retrieval rate/time

Lossless Coding ⇒ Rr= Σq P(q)H(X(q))

• Reqd. storage grows with size of query set

- (combinatorially) high storage rate!

Rs= Σq H(X(q))>>H(X1,…,XM)
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Impact/ApplicationsImpact/Applications

• Storage, search and retrieval of correlated streams 

of data e.g. from sensor networks, stocks 

A 2D Sensor Field: boxes are regions of interest
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Prior Work on Fusion Storage CodingPrior Work on Fusion Storage Coding

• Achievable rates (lossless coding) 
characterized by Nayak et al (2005)

• “Lossy” fusion coders by Ramaswamy et. 
al. (2007)

• Storage devices have fixed (limited) storage 
capacity (Rs)

• Allowed Rs, trade-off between distortion (D) and 
retrieval rate (Rr) optimized:

min D+ λRr
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The Fusion Coder (FC)The Fusion Coder (FC)
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Exploiting timeExploiting time--correlationscorrelations

• Sensor data exhibit time-correlations

⇒ fusion code over large blocks (?)

• Coding over large blocks impractical

- encoding complexities O(2NRs)

• Predictive coding – a low complexity 
alternative
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Optimal Predictive Fusion CodingOptimal Predictive Fusion Coding
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Complexity of Optimal Predictive Complexity of Optimal Predictive 

Fusion CodingFusion Coding

• Q   - set of queries

• |Q | prediction loops necessary

• |Q | prediction error residuals

- grows (combinatorially) with sources

• Dimensionality of input to encoder = M|Q |

- M|Q | >> M ⇒ high-complexity!!
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Constrained Predictive Fusion Constrained Predictive Fusion 

CodingCoding

• Constraints imposed for practical designs

• Allow only K prediction loops

• K chosen according to complexity possible

• Queries “share” the K predictors

• Zero “drift” between encoder and decoder

• Prediction bit-selector SP vs. Query bit-

selector S (q)
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Constrained Predictive Fusion Coding: Constrained Predictive Fusion Coding: 

EncoderEncoder
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Constrained Predictive Fusion Coding: Constrained Predictive Fusion Coding: 
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Issues in Predictive Coder DesignIssues in Predictive Coder Design

• Open loop design 
– generate prediction residuals separately

– design quantizer for residuals

– codebooks & predictor mismatched                    

• Closed loop design 
– close prediction loop; iteratively design encoder &

decoder       

– residuals (training set) change unpredictably during  

design

– unstable (feedback loop) at low rates
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Asymptotic Closed Loop DesignAsymptotic Closed Loop Design

• Always design in open loop 

⇒ stable design

• Gradually change training set in between design 

iterations

• Asymptotically loop is closed 

⇒ no mismatch of codebooks and predictor

• ACL design necessary for PFC design 

-  since Rs < M (low compression rate)
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ACL Update RulesACL Update Rules

1. Reconstruct source sequence X(n)=X(n)+e(n)

- for next iteration, new X(n)=PX(n-1)

2.   Create new prediction residuals e(n)=X(n)-X(n)

(in one go, avoiding the prediction loop)

3.   Update  all encoder and decoder mappings

4. Evaluate cost. 

If converged STOP,

ELSE   go to step 1 FOR DETAILS, REFER PAPER
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ExperimentsExperiments

• M Correlated 1st order Gauss-Markov sources

• E(WiWj)=ρij=ρ|i-j|  ≡ linear sensor array

• Xm(n)=βmXm(n-1)+Wm(n), ∀ 1≤ m ≤M

• “Neighborhoods” of n sources queried

• M=100 sources, ρ=0.95, βm=0.8  ∀m

• n=10, Uniform query distribution, |Q |=91
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ResultsResults
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ConclusionsConclusions

• Fusion coding of correlated sources - an 
important storage problem

• Exploit time-correlations by prediction

• Optimal predictive fusion coder (PFC) has high 
encoder complexity

• Constrained PFC designed by ACL principle

• Significant gains over memoryless FC and joint 
compression (VQ)


