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Multimedia Databases

� Handle video/image/audio/text data

e.g. in Picsearch, Youtube, Picasa,Facebook

� Often “metadata” lacking – needs to be extracted
- typical of scientific data e.g. in genomics, bio-molecular imaging

� Organized based on object content

� Today, multimedia data management critical
- with availability of cheap storage

- widespread use of multimedia devices

e.g. dig. still and video cameras, camcorders, MP3 players
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Challenges in Image Database Indexing

� “Interesting regions” in images apriori unknown

� High dimensional descriptors needed 
� color, color layout, shape, texture, SIFT etc.

� image similarity  ∝ feature vector distance

� Large volume of data
� search engines index billions of webpages,

� millions of photos uploaded each day to Facebook, Flickr, Picasa etc.

� Feature vectors stored “offline”

� Secondary storage (hard drives) slower

� I/O time dominates search

⇒ need efficient indexing
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Indexing High-dimensional Spaces

� State-of-the-art indexes based on compression

� Search compressed version of database

� Scalar quantization methods
� VA-file (VLDB 1998)

� Clustering/VQ methods  

� VQ is optimal in compression

� Compact representation of data-set

� VQ exploits correlations across dimensions

� Used extensively in approx kNN search

� Focus is on exact kNN search



Signal Compression Lab

VA-File based Indexing

� Quantize each 

dimension uniformly

� Quantize each element 

of data-set
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VA-File based Indexing

� Quantize each 
dimension uniformly

� Quantize each element 
of data-set

� Create approximation 
file

� store quantization bit-strings for 
each element
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VA-File –Query processing

1. Read approximation file

2. Establish lower and upper distance 
bounds to occupied cells

3. Eliminate irrelevant cells

4. Access all survivors in order of 
lower bounds

5. If kth lowest distance found so far, 
less than next lower bound, 

STOP (kNNs found)

Else read next survivor.

Query
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Clustering for Exact NN Search

� Bound distance to cluster

� Retrieve nearest clusters 

(till kNNs found)

� Bounds with rectangles and 
spheres loose

� “curse of dimensionality”

� Cluster-distance bounding 
(Ramaswamy & Rose ICIP 

2007)
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Perceptual Accuracy in Image Retrieval

� Quality of retrieved images important

� Euclidean distance/ l2 norm 
� typically, perceptually poor 

� Mahalanobis distance 

dw(x,y)=[(x-y)TW(x-y)]1/2 ,W>0
� More degrees of freedom

� Perceptually better similarity measure

� Also a metric (useful in indexing)  

� W = ?
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Learning Optimal W

� Useful W possibly independent of database

� Users mark relevant / irrelevant results

� System learns from feedback

� Update W for each user (Rui et. al. CVPR 2000)

� Update W in batch mode (Davis et. al. ICML 
2007)
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Indexing for Relevance Feedback 

� Normally, W is known prior to indexing

� W=UT∧U

� Rotate & skew data-set prior to indexing

� Index new feature set using Euclidean distance

� W changes ⇒ need to re-create index?

� Most indexes fail to adapt 
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VA-File with Relevance Feedback

� Mahalanobis Distance dW(x,y)

� W apriori unknown

� estimated from user feedback

� Cells now skewed and rotated

� Distance bounding complicated 

� O(Nd3) calculations

Query
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VA-File with Relevance Feedback

� Mahalanobis Distance dW(x,y)

� W apriori unknown
� estimated from user feedback

� Cells now skewed and rotated
� Distance bounding complicated 
� O(Nd3) calculations

� Fit bounding rectangles cells on 
skewed cells (Sakurai et. al. 
VLDB 2001)
� Bound distance to bounding 

rectangles
� O(Nd) calculations
� Bounding rectangles overlap

� ⇒ Distance bounds loosened 

� ⇒ (possibly) more disk accesses

Query
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Can clustering support relevance feedback? 
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Can clustering support relevance feedback? 

� Bound cluster-distance with changing W?
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Point-to-hyperplane Distance

Hyperplane H

y



Signal Compression Lab

Point-to-hyperplane Distance

Hyperplane H

y

Useful Invariance Property:
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Bounding  Query-Cluster Distance

Separating

Hyperplane H

y

Cluster Xm

QUERY

x

Euclidean distance:

Mahalanobis distance:
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Bounding  Query-Cluster Distance

Separating

Hyperplane H

y

Cluster Xm

QUERY
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Bounding  Query-Cluster Distance

Separating

Hyperplane H

y

Cluster Xm

Support evaluated offline & stored

•W changes ⇒ re-evaluate support?

Distance-to-cluster ≥ Query-Hyperplane distance + Cluster-Hyperplane Distance 

(“Support”)

QUERY

x
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Adaptive Support Estimation

New support can be found without accessing X
m
!

Invariance property ⇒
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Adaptive Cluster Distance Bounding

� Bound distance with multiple hyperplanes

� use tightest distance bound

� Cluster boundaries are linear 

� use them as (separating) hyperplanes

� no need to store hyperplanes
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Proposed Indexing Scheme

1. Cluster data-set through VQ/K-means
� “nearest neighbor” partitioning for linear boundaries

� evaluate cluster “supports” for current W

2. Bound query-cluster distance with 

hyperplane bound
� change in W ⇒ scale cluster support

3. Retrieve clusters in order of distance
� IF kNN distance so far < distance to next cluster

STOP (kNNs found)

ELSE read next cluster (till all clusters read)
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Set-up of Experiments

� Data-set BIO-RETINA

� Gabor texture features extracted from feline retina

� 208,506 elements

� 62 dimensional

� Clustered with squared Euclidean distance

� 10NN queries mined

� Search with new W=UT∧U

� U – orthonormal matrix randomly generated

� ∧ – eigenvalues uniformly distributed [0,10]

� Compared VQ/Clustering vs. VA-File
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Experiments

� Data retrieved in blocks/pages

� Page size – 8 kB ⇒ 34 feature vectors per page

� Disk access: Sequential vs. Random disk IOs

� Every access = 1 random IO + rest serial IOs

� Parameter varied

� VA-File quantization bits per dimension (3-12 bits)

� Number of clusters in cluster-distance bounding (10-

600 clusters)
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Results: IO Performance
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Results: Preprocessing Storage
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Results: Computational Costs
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Summary

� Indexing image databases is a challenge

� Mahalanobis distance dW(x,y)
� perceptually better 

� trained/tuned with user/relevance feedback

� Relevance feedback complicates indexing

� Derived distance ratio invariance property
� combined with cluster-distance bounding

� Proposed index outperforms VA-File
� lower IO, storage and computation costs


