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Coding of Correlated SourcesCoding of Correlated Sources

• Well studied problem in Information Theory 

(Slepian-Wolf (1973), Wyner-Ziv (1976)) 

• Independent encoding/transmission

• (Joint) Decoding with Side-information

X

Y

X
^

 εY

εx   D



Signal Compression Lab, UCSBSignal Compression Lab, UCSB 33

Coding of Correlated Sources …Coding of Correlated Sources …

• Other flavors: multi-terminal source coding, 

distributed source coding

• Applications: distributed compression in sensor 

networks (DISCUS (2000), Network VQ (2001))
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Coding Correlated Sources for StorageCoding Correlated Sources for Storage

• New setting: Storage Media

• Joint encoding/compression/storage of sources

• Selective Retrieval of sources!!!
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Min. Storage Rate vs. Min. Retrieval RateMin. Storage Rate vs. Min. Retrieval Rate

• Compressing all sources together minimizes storage

Rs=H(X1,…,XM)

- but compromises retrieval speed 

Rr=Rs=H(X1,…,XM)>> Σq P(q)H(X(q))

• Compressing each subset separately

minimizes retrieval rate/time

Rr= Σq P(q)H(X(q))

- but (exponentially) large query sets    

result in very high storage rate

Rs= Σq H(X(q))>>H(X1,…,XM)
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Impact/ApplicationsImpact/Applications

• Storage, search and retrieval of correlated streams 

of data e.g. from sensor networks, stocks 

A 2D Sensor Field: boxes are regions of interest
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Prior Work on Fusion Storage CodingPrior Work on Fusion Storage Coding

• Asymptotically lossless “fusion codes” analyzed 
by Nayak et. al. (2005)

• Reformulation as a multi-terminal source coding 
problem (Han and Kobayashi (1980))

• A single letter achievable rate region also given
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Practical Fusion CodingPractical Fusion Coding

• Fusion Coders by Ramaswamy et. al. (2007)

• Storage of signals – with (lossy) quantization

• Storage devices have fixed (limited) storage capacity (Rs)

• Allowed Rs, trade-off between distortion and retrieval rate 

optimized:

min D(Rs)+ λRr(Rs)

• Query-dependent bit-(subset) selection (and relevant 
codebooks) for selective retrieval …
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The Fusion Coder (FC)The Fusion Coder (FC)
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Advantages and Limitations of FCAdvantages and Limitations of FC

• Significant gains over joint comp. (VQ)

• Better performance at higher Rs

-needed for large sensor networks

• Higher Rs => more freedom to design bit-
selector

• But system complexity ~ O(2Rs)
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Bit-selector design: O(2Rs) bit-combinations

Scalability of Fusion CoderScalability of Fusion Coder
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The Shared Descriptions ApproachThe Shared Descriptions Approach

• Impose structural constraints on bit-selector module

• Selection only from disjoint groups of bits (descriptions)
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The Shared Descriptions ApproachThe Shared Descriptions Approach

• Impose structural constraints on bit-selector module

• Selection only from disjoint groups of bits (descriptions)
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The Shared Descriptions ApproachThe Shared Descriptions Approach

• Impose structural constraints on bit-selector module

• Selection only from disjoint groups of bits (descriptions)
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Experimental SetExperimental Set--upup

• Sources: Zero-mean, correlated memoryless Gaussian rv’s

• E(XiXj)=ρij=ρ|i-j|  ≡ linear sensor array

• “Neighborhoods” of n sources queried

• M=50 sources, ρ=0.8, 

• n=10, Uniform query distribution, |Q |=41
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Comparison with Fusion CodingComparison with Fusion Coding
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Shared Descriptions Fusion CodingShared Descriptions Fusion Coding

• Bit-selector = Description selector β

+ (within description) bit-selector Sk

• Bits used by kth description=Rs,k

• Complexity measure Cnet= Σk 2
Rs,k

• Net storage Rs,net= Σk Rs,k

• Allowed complexity C, storage Rs, K descriptions

min D(Rs)+ λRr(Rs)  ∋ Rs,net ≤Rs, Cnet ≤C
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Shared Descriptions Fusion CoderShared Descriptions Fusion Coder
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Reference for ComparisonReference for Comparison

• Scalar Quantization: 
- compress each source separately

• Split Vector Quantization (VQ): 
- group sources

- share/split storage rate

- compress group

• Rs=24,M=50, Uniform “neighborhood” queries

• Scalar quant. : 1 bit per source

• Split VQ: 24,12,8,6,4 groups
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SDFC vs. Split VQ, Scalar Quant.SDFC vs. Split VQ, Scalar Quant.
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ConclusionsConclusions

• Fusion storage and selective retrieval of correlated 
sources: an important problem

• Fusion coders optimal, but not scalable

• SDFC: “Share descriptions and control complexity”

• Significant advantages over naïve schemes
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Future WorkFuture Work

• Evaluate rate-distortion functions

• Quantization in query space

• SDFC + Predictive Fusion Coding …


