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Abstract

This paper focuses on optimal analog mappings for zero-delay, distributed
source-channel coding. The objective is to obtain the optimal vector trans-
formations that map between m-dimensional source spaces and k-dimensional
channel spaces, subject to a prescribed power constraint and assuming the
mean square error distortion measure. Closed-form necessary conditions for
optimality of encoding and decoding mappings are derived. An iterative de-
sign algorithm is proposed, which updates encoder and decoder mappings by
sequentially enforcing the complementary optimality conditions at each itera-
tion. The obtained encoding functions are shown to be a continuous relative of,
and in fact subsume as a special case, the Wyner-Ziv mappings encountered in
digital distributed source coding systems, by mapping multiple source intervals
to the same channel interval. Example mappings and performance results are
presented for Gaussian sources and channels.

1 Introduction

Analog mappings for joint source channel coding have been studied since Shannon’s
seminal work [1] where the use of space filling curves was suggested for transmission
of Gaussian sources over higher dimensional Gaussian channels (i.e., with bandwidth
expansion) [2, 3, 4, 5]. Although analog mappings with finite delay will not, in general,
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reach the asymptotic coding performance bounds, except for a few special cases (such
as Gaussian source and channel of the same dimension [6]), they do possess desirable
properties: low complexity, zero delay, and better robustness to varying channel SNR.

In our prior work [7], we presented the optimality conditions for such analog
mappings for point to point scenarios, along with an algorithm to obtain the locally
optimal mappings. In this paper, we extend the work to distributed coding scenarios.
We focus on two settings: The first one involves source-channel coding when side
information is available to the decoder. This setting has been studied extensively
both theoretically [8, 9] and in practice [10]. The second setting involves distributed
source-channel coding where multiple correlated sources are encoded separately and
transmitted over different channels. An important practical motivation for this setup
is sensor networks where sensor measurements are correlated but are not encoded
jointly due to physical constraints. This problem has also been studied extensively,
especially for Gaussian sources [11].

The derivation of the optimality conditions is a direct extension of our prior work,
but the distributed nature of the setting results in complex mappings that are highly
nontrivial. Numerical optimization of such mappings heavily depends on initial con-
ditions due to numerous local minima of the cost functional. Note in particular that
in the case of Gaussian sources and channels, linear encoders and decoder satisfy the
necessary conditions of optimality while, as we will see, careful optimization obtains
better mappings that are far from linear.

In Section II, we formulate the problem, present the necessary conditions for
optimality and proposed an iterative design algorithm. We provide example mappings
and comparative performance results in Section III. We conclude in Section IV.

2 Problem and Proposed Solution

2.1 Problem Formulation

The first setup of source-channel coding with side information is shown in Figure 1,
and the second setup of distributed coding is depicted in Figure 2. In both cases,
there are two correlated vector sources X1 ∈ Rm1 and X2 ∈ Rm2 . The noise variables,
N,N1,N2 are assumed to be independent of the sources X1,X2. The m1,m2-fold
source density is denoted as fX1,X2(x1,x2).

In the side information setup, X2 is available to the decoder, and X1 is transformed
into Y ∈ Rk by a function g : Rm1 → Rk and transmitted over an additive noise
channel where N ∈ Rk, with k-fold noise density is fN(n), is independent of X1,X2.
The received output Ŷ = Y+N is transformed to the estimate X̂ through a function
h : Rk × Rm2 → Rm

1 . The m1-fold source density is denoted as fX(x) and k-fold
noise density is fN(n). The problem is to find optimal mapping functions g,h that
minimize distortion

E(|X1 − X̂1|2), (1)
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Figure 1: Block diagram: mapping for source-channel coding with side information
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Figure 2: Block diagram: mapping for distributed source-channel coding

subject to average power constraint

P [g] =

∫
Rm1

g(x)Tg(x)fX(x)dx ≤ P. (2)

In the second case, both sources are transformed through g1 : Rm1 → Rk1 and
g2 : Rm2 → Rk2 and transmitted over the noisy channel with k1-fold noise density,
fN 1(n1) and k2-fold noise density fN 2(n2). At the decoder, X̂1 and X̂2 are generated
by h1 : Rk1×Rk2 → Rm1 and h2 : Rk1×Rk2 → Rm2 . The problem is to find optimal
mapping functions g1,g2,h1,h2 that minimize distortion

E(|X1 − X̂1|2 + |X2 − X̂2|2), (3)

subject to the average power constraint

P [g1,g2] =

∫
Rm1 ,Rm2

(g1(x)Tg1(x) + g2(x)Tg2(x))fX1,X2(x1,x2)dx1dx2 ≤ P. (4)

Bandwidth compression-expansion is determined by the setting of the source and
channel dimensions, k/m1 for case-1 and k1/m1, k2/m2 for case-2.
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2.2 Optimal Decoding Given Encoder(s)

Case-1: Assume that the encoder g is fixed. Then the optimal decoder is the mini-
mum mean square error estimator (MMSE) of X1 given Ŷ and X2, i.e.,

h(ŷ,x2) = E[X1|ŷ,x2]. (5)

Plugging the expressions for expectation, applying Bayes’ rule and noting that fŶ |X1
(ŷ|x1) =

fN [ŷ − g(x1)], the optimal decoder can be written, in terms of known quantities, as

h(ŷ) =

∫
x1 fX1,X2(x1,x2) fN [ŷ − g(x1)]dx1∫
fX1,X2(x1,x2) fN [ŷ − g(x1)]dx1

. (6)

Case-2: Here we assume that the two encoders are fixed. Then, the optimal decoders
are h1(ŷ1, ŷ2) = E[X1|ŷ1, ŷ2] and h2(ŷ1, ŷ2) = E[X2|ŷ1, ŷ2] and can be written as

h1(ŷ1, ŷ2) =

∫
x1fX1,X2(x1,x2)fN1,N2 [ŷ1−g(x1), ŷ2−g(x2)]dx1dx2∫
fX1,X2(x1,x2)fN1,N2 [ŷ1−g(x1), ŷ2−g(x2)]dx1dx2

(7)

h2(ŷ1, ŷ2) =

∫
x2fX1,X2(x1,x2)fN1,N2 [ŷ1−g(x1), ŷ2−g(x2)]dx1dx2∫
fX1,X2(x1,x2)fN1,N2 [ŷ1−g(x1), ŷ2−g(x2)]dx1dx2

. (8)

2.3 Optimal Encoding Given Decoder(s)

Case-1: Assume that the decoder h is fixed. Our goal is to minimize the distortion
subject to the average power constraint. The distortion is expressed as a functional
of g:

D[g]=

∫
[x1−h(g(x1)+n,x2)]T[x1−h(g(x1)+n,x2)]fX1,X2(x1,x2)fN(n)dx1dx2 dn.

(9)

We construct the Lagrangian cost functional to minimize over the mapping g,

J [g] = D[g] + λ {P [g]− P} . (10)

To obtain necessary conditions we apply the standard method in variational calculus:
The Frechet derivative must vanish at an extremum point of the functional J [12].
This gives the necessary condition for optimality as

∇J [g](x1, x2) = 0, ∀x1, x2 (11)

where

∇J [g](x1, x2)=λfX1,X2(x1,x2)g(x1)−
∫

h′(g(x1)+n,x2)[x−h(g(x)+n,x2)]

fN(n)fX1,X2(x1,x2)dn. (12)
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Case-2: Here we assume the decoders are fixed and we find the encoders g1,g2 that
minimize the total cost J = D[g1,g2] + λ {P [g1,g2]− P} where

D[g1,g2]=

∫
[x1−h1(g1(x1)+n1,g2(x2)+n2)]T[x1−h1(g1(x1)+n1,g2(x2)+n2)]

+[x2−h2(g1(x1)+n1,g2(x2)+n2)]T[x2−h2(g1(x1)+n1,g2(x2)+n2)]

fX1,X2(x1,x2)fN1,N2(n1,n2)dx1dx2 dn1dn2.
(13)

The necessary conditions are derived by requiring

∇J [g1](x1, x2) = ∇J [g2](x1, x2) = 0 ∀x1, x2, (14)

where ∇J [g1](x1, x2) = ∂J
∂g1

and ∇J [g2](x1, x2) = ∂J
∂g2

[12]. (Explicit expressions are

omitted for brevity, but can be derived similar to Case-1). Note that, unlike the
decoder result, the optimal encoder is not specified in closed form.

2.4 Algorithm Sketch

The basic idea is to alternate between enforcing the complementary necessary condi-
tions for optimality. Iterations are continued until the algorithm reaches a stationary
point where the total cost does not decrease anymore (in practice, until incremental
improvements fall below a convergence threshold). Since the encoder(s) condition is
not in closed form, we perform steepest descent search on the direction of the Frechet
derivative of the Lagrangian with respect to the encoder mapping(s) g for Case-1
and g1, g2 for Case-2. By design, the Lagrangian cost decreases monotonically as the
algorithm proceeds iteratively. The various encoders are updated as given generically
in (15), where i is the iteration index and µ is the step size.

gi+1(x) = gi(x)− µ∇J[g] (15)

Note that there is no guarantee that an iterative descent algorithms of this type
will converge to the globally optimal solution. The algorithm will converge to a local
minimum, which may not be unique. To avoid poor local minima, one can run the
algorithm several times with different initial conditions, and in the case of highly
complex cost surfaces it may be necessary to apply more structured solutions such
as deterministic annealing [13]. The scope of this paper and the simulations are
restricted to use a more modest means by applying a noisy channel relaxation variant
to avoid local minima following the proposal in [14, 15].

3 Results

In this section, we demonstrate the use of the proposed algorithm by focusing on
specific scenarios. Note the algorithm is general and directly applicable to any choice
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of dimensions as well as source and noise distributions, and also allows for corre-
lations across noise dimensions. However. for conciseness of the results section we
assume that sources are jointly Gaussian scalars with correlation coefficient ρ. and
are identically distributed. We also assume the noise is scalar and Gaussian.

3.1 Initial Conditions

An important observation is that the linear encoder-decoder pair satisfies the neces-
sary conditions of optimality, although, as we will illustrate, there are other mappings
that perform better. Hence, initial conditions have paramount importance in obtain-
ing better results. In an attempt to circumvent the poor local minima problem, we
embed in the solution the noisy relaxation method of [14, 15]. We initialize the en-
coding mapping(s) with random initial conditions and run the algorithm for a very
noisy channel (high Lagrangian parameter λ). Then, we gradually increase channel
SNR (CSNR) (decrease λ) while using the prior mapping as initial condition.

We implemented the above algorithm by numerically calculating the derived in-
tegrals. For that purpose, we sampled the distribution on a uniform grid. We also
imposed bounded support (−3σ to 3σ) i.e., neglected tails of the infinite support
distributions in the examples.

3.2 Case-1: JSCC with Side information

Figure 3 presents an example of encoding mapping obtained for correlation coeffi-
cient ρ = 0.97. Interestingly, the analog mapping captures the central characteristic
observed in digital Wyner-Ziv mappings, in the sense of many-to-one mappings, or
multiple source intervals are mapped to the same channel interval, which will poten-
tially be resolved by the decoder given the side information. Within each bin, there
is a mapping function which is approximately linear in this case (scalar Gaussian
sources and channel). To see the effect of correlation on the encoding mappings, we
present another example in Figure 4. In this case ρ = 0.9 and, as intuitively expected,
the side information is less reliable and source points mapped to the same channel
representation grow further apart from each other. Comparative performance results
are shown in Figure 5. The proposed mapping outperforms the linear mapping for
the entire range of CSNR values significantly.

3.3 Case-2: Distributed JSCC

Here we consider jointly Gaussian sources that are transmitted separately over inde-
pendent channels. Note that our algorithm and derived necessary conditions allow
the channels to be correlated, but for the sake of simplicity we assume they are
independent, additive Gaussian channels.

Figure 6 presents an example of encoding mappings for correlation coefficient
ρ = 0.95. The comparative performance results are shown in Figure 7. The proposed
mapping outperforms the linear mapping for the entire range of CSNR values. Note
that encoders are highly asymmetric in the sense that one is Wyner-Ziv like and
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Figure 3: Example encoder mappings at correlation coefficient ρ = 0.97, Gaussian
scalar source, channel and side information
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Figure 4: Example encoder mappings at correlation coefficient ρ = 0.9, Gaussian
scalar source, channel and side information
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Figure 5: Comparative results for correlation coefficient ρ = 0.9, Gaussian scalar
source, channel and side information

maps several source intervals to the same channel interval, whereas other encoder is
almost a monotonic function. While we can offer tentative explanation to justify the
form of this solution, we above all observe that it does outperform the symmetric
linear solution. This demonstrates that by breaking from the linear solution and
re-optimizing we do obtain an improved solution. Moreover, it suggests that some
symmetric highly non-linear solution may exist whose discovery would need more
powerful optimization tools – a direction we are currently pursuing.

4 Discussion and Future Work

In this paper, we derived the necessary conditions of optimality of the distributed
analog mappings. Based on these necessary conditions, we derived an iterative algo-
rithm to generate locally optimal analog mappings. Comparative results and example
mappings are provided and it is shown that the proposed method provides significant
gains over simple linear encoding. As expected the obtained mappings resembles
Wyzer-Ziv mappings in the sense that multiple source intervals are mapped to the
same channel interval. The algorithm does not guarantee a globally optimal solu-
tion. This problem can be largely mitigated by using more powerful optimization, in
particular a deterministic annealing approach, which is left as future work.
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