ASYMPTOTIC CLOSED-LOOP DESIGN FOR TRANSFORM DOMAIN TEMPORAL PREDICTION

TRANSFORM DOMAIN TEMPORAL PREDICTION (TDTP)

Pixel-Domain Inter Prediction is Suboptimal

- Traditional inter prediction copies pixels one-by-one.
- Suboptimal because it ignores spatial correlation.
- Transform Domain Temporal Prediction (TDTP): DCT (largely) achieves spatial decorrelation, enabling optimal one-to-one prediction.

Hidden Temporal Correlation at High Frequency

Pixel domain Pixel domain $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Reference block									Original					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pixel domain								$\rho \approx 1$						
DCT 1497 -2 -33 -4 -21 81 14 0 1505 1 -44 -10 -44 229 -10 64 52 1 -70 -26 2 230 -11 62 50 51 0 8 47 -70 -146 39 -15 1 5 -41 38 -53 -136 -4 136 -38 18 130 -35 69 20 -4 -110 -39 24 143 -3 43 17 -46 -82 -6 -20 19 4 0 23 -44 -82 -30 -25 1 15 37 -10 35 -12 -5 1 -8 21 29 4 -25 1 15 37 -10 35 -12 -5 1 -1 -2 -3 3 8											low	freq	ho ?	≈ 1	
DCT 8 47 -70 -146 39 -15 1 5 -41 38 -53 -136 -41		1497	-2	-33	-4	-21	81	14	0		1505	1	-44	-10	-4
DCT domain847-70-14639-1515-4138-53-136-41-136-3818130-356920-4-110-3924143-304678-239-1710-54-308880126-3464317-46-82-6-20194023-44-82-3046-2511537-1035-12-51-821294-62462-1751-1-2-338	DCT domain	229	-10	64	52	1	-70	-26	2		230	-11	62	50	51
-136 -38 18 130 -35 69 20 -4 -110 -39 24 143 -30 domain 78 -2 39 -17 10 -54 -30 8 80 1 26 -3 46 43 17 -46 -82 -6 -20 19 4 0 23 -44 -82 -30 -25 1 15 37 -10 35 -12 -5 1 -8 21 29 4 -6 2 4 6 2 -17 5 1 -1 -2 -3 3 8		8	47	-70	-146	39	-15	1	5		-41	38	-53	-136	_9
domain 78 -2 39 -17 10 -54 -30 8 80 1 26 -3 46 43 17 -46 -82 -6 -20 19 4 0 23 -44 -82 -30 4 -25 1 15 37 -10 35 -12 -5 1 -8 21 29 4 -6 2 4 6 2 -17 5 1 -1 -2 -3 3 8		-136	-38	18	130	-35	69	20	-4		-110	-39	24	143	-3
43 17 -46 -82 -6 -20 19 4 0 23 -44 -82 -30 -25 1 15 37 -10 35 -12 -5 1 -8 21 29 4 -6 2 4 6 2 -17 5 1 -1 -2 -3 3 8		78	-2	39	-17	10	-54	-30	8		80	1	26	-3	46
-25 1 15 37 -10 35 -12 -5 1 -8 21 29 4 -6 2 4 6 2 -17 5 1 -1 -2 -3 3 8		43	17	-46	-82	-6	-20	19	4		0	23	-44	-82	-3(
-6 2 4 6 2 -17 5 1 -1 -2 -3 3 8		-25	1	15	37	-10	35	-12	-5		1	-8	21	29	4
		-6	2	4	6	2	-17	5	1		-1	-2	-3	3	8

- Correlation in pixel domain is dominated by the low frequencies ($ho \approx$ 1), inspiring the traditional pixel copying prediction.
- TDTP: Accounts for variation in temporal correlation across frequency, which is hidden in pixel domain.

Sub-Pixel Motion Compensation Interferes with TDTP

- The interpolation low-pass filters scale down high-frequencies as per its magnitude response.
- Thus we apply TDTP conditioned on the sub-pixel location.

CLOSED-LOOP PREDICTOR DESIGN

• The optimal predictor for each transform domain coefficient is given by,

$$\tilde{\boldsymbol{x}}_n = \rho \hat{\boldsymbol{x}}_{n-1}$$

 Given the motion compensated reference blocks, the optimal prediction coefficient is the correlation coefficient,

$$\rho = \frac{\boldsymbol{E}(\boldsymbol{x}_n \hat{\boldsymbol{x}}_{n-1})}{\boldsymbol{E}(\hat{\boldsymbol{x}}_{n-1}^2)}$$

SHUNYAO LI, TEJASWI NANJUNDASWAMY, YUE CHEN and KENNETH ROSE SIGNAL COMPRESSION LAB, ECE DEPARTMENT, UNIVERSITY OF CALIFORNIA, SANTA BARBARA

INSTABILITY DUE TO QUANTIZATION ERROR PROPAGATION

• As we operate this predictor in closed loop, the new reconstructed frames (which are prediction reference for future frames) have different statistics, for which the correlation coefficient $\rho' \neq \rho$.

- This deviation in statistics between design and operation grows over frames.
- Thus we propose the asymptotic closed-loop (ACL) design approach for TDTP.

ASYMPTOTIC CLOSED-LOOP (ACL) DESIGN

• ACL is an iterative open-loop design technique that asymptotically optimizes the system for closed-loop operation.

- Given the reconstructed data at iteration t 1, $\hat{x}_{n-1,t-1}$ (n = 2...N), estimate the prediction coefficient for iteration t as, $\rho_t = E(x_n \hat{x}_{n-1,t-1})/E(\hat{x}_{n-1,t-1}^2)$.
- Then employ open-loop prediction to generate, $\tilde{x}_{n,t} = \rho_t \hat{x}_{n-1,t-1}$.
- Since ρ_t is directly optimized for the statistics of $\hat{x}_{n-1,t-1}$ (n = 2...N), the prediction $\tilde{x}_{n,t}$ is guaranteed to improve.
- Better prediction usually leads to better reconstruction, $\hat{x}_{n,t}$, and vice versa.
- The reconstruction error decreases over iterations and on convergence, $\hat{x}_{n,t-1} = \hat{x}_{n,t}$, which is equivalent to the closed-loop system.

TWO LOOP ASYMPTOTIC CLOSED-LOOP (ACL) DESIGN FOR TDTP

- In video coding, encoder decisions (e.g. mode decisions, motion vectors, quantization, etc.) are dependent on the prediction.
- Thus we proposed a two-loop design scheme: Inner loop: Estimate prediction coefficient ρ via ACL with encoder decisions fixed. Outer loop: Update encoder decisions with ρ fixed.
- We design different prediction coefficients conditioned on: sub-pixel location, quantization parameter (QP), skip/non-skip mode

EXPERIMENTAL RESULTS

- transform size are restricted to 8x8, and the motion search is at half-pixel precision. and 4.96% outside training set (Exp2).
- The proposed approach was implemented in HM 14.0. Both prediction size and • The average bitrate reduction over standard HEVC is 6.53% for training set (Exp1)
- In Exp2 we provide a choice of 8 sets of prediction coefficients at the encoder with an overhead of 3 bits per sequence. The difference between the two experiments suggests further scope for adaptivity.

