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Abstract

Optimal Delayed Decisions in Encoding and Decoding of Audio Signals and

General Sources

by

Vinay Melkote Krishnaprasad

This dissertation is concerned with algorithms that optimally exploit delay for

encoding or decoding decisions in certain common scenarios involving signal com-

pression.

In applications that involve off-line encoding, such as movie-streaming over

the internet, music playback from hand-held devices, and so on, the end-user is

not sensitive to encoding delay. Despite this fact, encoders typically compress

frame after frame of the signal, thereby restricting encoding delay. As one focus

of this dissertation, delayed-decision approaches are explored, to optimize the

encoding operation over the entire signal. Standards based audio-compression is

chosen as the candidate setting to demonstrate the benefits of the concept. A

two-layered trellis effectively optimizes both intra- and inter-frame encoding de-

cisions while minimizing a psychoacoustically relevant distortion measure under

a prescribed bit-rate constraint. The bit-stream produced is standard compat-

ible and there is no additional decoding delay. As an accompaniment to this

rate-distortion optimization paradigm, and motivated by it, modifications are

proposed to the audio distortion metric itself that enhance its psychoacoustic

relevance, and endeavor to enable subjectively optimal decisions.
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Subsequently the focus shifts to delay at the decoder end of the compression

chain. Unlike at the encoder, there are no parameter choices to make. But can the

decoder, by suitable application of delay, exploit correlations if any with future

frames to improve the reconstruction of the current frame? This question is par-

ticularly relevant in predictive coding scenarios, where a correlated source model

is explicitly assumed. The encoder predicts the current sample from the past,

and codes the prediction residual. Correlations with future samples can be ex-

ploited at the decoder end, for instance by applying a non-causal filter to smooth

the regular zero-delay reconstructions. In contrast, this dissertation proposes

an estimation-theoretic framework where conditional probability densities, given

both past and available future information (for a fixed delay), are recursively cal-

culated, and optimal reconstruction computed via conditional expectation. This

optimal delayed decoder in turn motivates a near-optimal low complexity ap-

proximation, that employs a time-invariant look-up table or codebook approach.

Applications include video compression employing motion compensated predic-

tion, and so called ‘low-delay’ applications, where predictive coding is used in

lieu of transform coding to avoid large framing delays and encoding complexity.
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Chapter 1

Introduction

The continued growth in multimedia applications has ensured the widespread

utility of signal compression in its different forms, such as transform coding,

predictive coding, etc. The general trend is to adopt a particular compression

standard for a particular source type (for instance, H.264 for video coding [85],

MPEG Advanced Audio Coding (AAC) [43, 44], etc.), which ensures that the

same content is compatible with applications from different vendors. Addition-

ally, it provides the opportunity to deploy the same encoding/decoding algorithms

in various applications, although the implementation may be optimized for the

specific platform. But such a straightforward deployment of existing algorithms

may not ensure that system resources are well utilized. In particular, applica-

tions have varied sensitivity to encoding/decoding delays. For example, two-way

communication generally imposes strict requirements for low encoding/decoding

delay, live broadcasts can tolerate a relatively higher latency, applications that

employ off-line coding are generally insensitive to encoding delays, and so on.

Therefore, employing the same general purpose encoding/decoding techniques in
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all applications will necessarily ignore the potential gains achievable due to ac-

ceptable latency in the compression chain. This dissertation reconsiders certain

applications of compression with the objective of employing delay as a resource,

and proposes novel algorithms that optimally utilize this resource to perform en-

coding/decoding decisions. As shall be demonstrated, substantial performance

gains can be obtained via careful application of delay at the encoder or decoder

for optimal coding parameter selection or data reconstruction.

We first focus on the optimal utilization of encoding delay for coding param-

eter selection in audio compression. Since many audio coding applications, such

as audio streaming over the internet, or music playback from hand-held devices,

involve content that is compressed off-line, this provides the ideal setting to real-

ize the potential of allowed encoding delay. This focus is elaborated upon in Sec.

1.1. As we shall see, the proposed delayed decision-based audio coding algorithms

considerably outperform conventional myopic general purpose encoders.

Subsequently we consider delay at the decoder end. Since the decoder is not

involved in parameter selection but only reconstructs coded data, we consider

the application of delay to optimally incorporate future information to improve

the reconstruction of the current frame/sample. Predictive coding forms the

appropriate setting here due to the implied correlations between coded data units.

Although this research, discussed in more detail in Sec. 1.2, finds utility in

any conventional predictive coding application, for example, motion-compensated

video compression, it is of particular significance to certain emerging low-delay

applications, such as audio/speech compression for blue-tooth devices, image-

sensors and so on.

Before getting on with a more detailed exposition of the above topics, con-
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sider the perspective of delay in classical source coding theory. Delay has been

conventionally viewed via two different, yet related, formulations: block codes

[78], and sliding block codes [35]. Consider a discrete source represented by the

sequence of random variables {Xk}. In the former formulation, the nth block of

the source, (XnN , . . . , X(n+1)N−1), is mapped by the encoder to an index in. The

decoder, on receipt of this index, reconstructs the whole block at once to obtain

(X̂nN , . . . , X̂(n+1)N−1). Thus, the blocking (or framing) results in an average re-

construction latency or delay of N/2 samples. On the other hand, in sliding block

codes the encoder maps the block (Xn−NM
, . . . , Xn+ND

) containing the nth sam-

ple, to the index in. The decoder typically reconstructs X̂n, as a function of the

window of indices (in−KM
, . . . , in+KD

), that includes the nth index. Both encoder

and decoder windows slide over by 1 sample after each encoding or decoding op-

eration. In this case, decision making at the encoder and decoder entails delay,

i.e., the encoder’s choice of the nth index takes into account the effect of this

decision on ND future samples, and the decoder decides its reconstruction of the

nth sample based not just on the current index in, but also on information from

KD future indices. With the above perspective, the focus of this dissertation can

be alternately summarized as the application of delay in the tradition of sliding

block codes, to optimize encoding or decoding decisions in certain well known

scenarios of signal compression where, conventionally the problem is viewed as

that of block coding and decisions made independently for each block, or even

if a sliding block code viewpoint is adopted, the utility of delay is hardly (or

sub-optimally) exploited.
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1.1 Optimal Delayed Encoding

In the context of encoding delay, we consider audio compression in the frame-

work of the AAC standard. In AAC, the audio signal is divided into overlapping

frames, each of which is transformed to the frequency domain, and the transform

coefficients quantized and encoded. At the decoder the reconstructed coefficients

are inverse transformed, and frames overlap-added to reconstruct the time do-

main signal. Audio encoders generally compress frame after frame of the signal,

with encoding parameters chosen almost independently for each frame. This type

of coding operation can typically be visualized as a block code operating within

the frequency domain, i.e., there is blocking delay, but no delayed decisions at

the encoder. In reality though, most applications of audio compression, such as

streaming of music over the internet, hand-held music playback devices, gaming

audio, etc., involve pre-compressed data, and encoding delay is not crucial to the

end-user experience. Hence the myopic approach adopted by current encoders,

that restricts delay in choosing encoding parameters, is sub-optimal. We are

therefore motivated to consider a joint optimization of parameter choices for all

frames of the audio file. In other words, akin to a sliding block code, improved

encoding decisions for each frame can be achieved by considering the effect of

such decisions on frames other the one being encoded. Needless to say the utility

of this delayed encoding principle is not limited to audio compression, and can

be applied in any situation where off-line coding is involved.

We cast the problem as one of rate-distortion (R-D) optimization: given a

rate constraint, encoding parameters for the entire audio signal need to be cho-

sen so that a psychoacoustically relevant distortion metric is minimized. As will
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become obvious later, the complexity of a näıve search in the parameter space,

for the optimal set, is exponential in the number of frames. To alleviate this

problem we propose a dynamic programming-based two-layered trellis algorithm

that jointly optimizes the choice of both inter- and intra-frame coding parame-

ters via delayed decisions. Chapter 2 of this dissertation describes the proposed

algorithm, along with requisite background information on AAC, and presents

results, that demonstrate the superiority of the proposed encoder compared to

standard algorithms.

Although the two-layered trellis guarantees the optimal parameter choices,

optimality in terms of subjective quality critically depends on how well coding

artifacts are captured in the distortion metric. The most commonly employed

audio distortion metric is the noise-to-mask ratio (NMR) (more on this metric in

Chapter 2). Based on observations from our R-D optimization approach to audio

coding, we propose modifications to the NMR metric to enhance its subjective

relevance. While this latter research on distortion metrics is orthogonal to the

delayed source coding emphasis of this thesis, we include it in this dissertation, in

part to indicate the practical importance of employing the right distortion metric

in audio coding, and in part due to these modifications being inspired by the

R-D optimization problem. Chapter 3 describes these modifications to the NMR

metric, and the subjective improvements obtained when they are embedded into

the encoder.

We note that although the emphasis in this thesis is on optimal encoding

decisions for audio compression (where such delayed decisions are particularly

useful), there has been considerable amount of prior work on incorporating en-

coding delay for decision making, in certain other areas of signal compression.
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Notable amongst them include tree coding ([23], [48], etc.) and its application to

speech coding ([5], [34], [86], etc.), trellis codes ([36], [58]), trellis coded quanti-

zation ([30], [57]) and its applications, for instance in image coding [33], [82], etc.

Prior research on delayed decisions for audio compression is described in Chapter

2, where we contrast the proposed algorithm with such methods.

1.2 Optimal Delayed Decoding

In the case of decoding delay, we consider the scenario of predictive coding of

autoregressive (AR) sources with a differential pulse code modulation (DPCM)

scheme [27]. Although DPCM is a very simple predictive coding scheme, the

operation of standard video compression algorithms, for instance, that employ

inter-frame prediction can be cast into a DPCM setting. The DPCM encoder

predicts the current sample from past reconstructed samples, and quantizes and

encodes the prediction residual. Generally, the DPCM decoder on receipt of each

index, immediately reconstructs the prediction error, and via prediction obtains

the reconstruction of the corresponding sample, i.e., the decoder operates with

zero delay. Such a predictive coder can be thought of as a sliding block code with

infinite memory (NM = ∞ and KM = ∞), and zero look-ahead (ND = KD = 0).

At very high bit-rates it can usually be argued that the prediction errors are

almost the same as the innovations of the AR process, which form a sequence of

independent random variables [27], [38], [41]. Hence the quantization indices too

are almost independent, which implies that future indices provide no additional

information on the current sample, and zero-delay decoding is optimal. But

in practice bit-rates are limited and such arguments do not hold. Thus the
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prediction errors, and indices, form a sequence of correlated random variables.

In this case delay at the decoder can be exploited (i.e., a sliding block code with

non-zero KD can be employed) to improve the reconstruction of each sample.

Prior work such as [20], [77] that target delayed decoding of predictively en-

coded sources adopt a smoothing/filtering approach to the problem: the regular

zero-delay reconstructions are just processed by a non-causal filter. In contrast to

such ad hoc methods, we develop in this dissertation an estimation-theoretic (ET)

optimal delayed decoder. This ET decoder recursively calculates the probabil-

ity density function (pdf) of each sample, conditioned on all available past and

future information, and obtains the optimal reconstruction via conditional expec-

tation. The optimal delayed decoder in turn motivates an approximate decoder

that employs a codebook or look-up table to obtain the delayed reconstructions,

and hence is computationally efficient. In experiments, this codebook decoder

is observed to have performance very close to that of the optimal decoder. Also

presented are methods to curtail the storage needed for this codebook. Chapter

4 develops this theory of optimal delayed decoding, describes relevant prior work,

and presents results in the setting of scalar AR sources.

As argued in the previous discussion, a sliding block code that incorporates

future quantization indices finds utility only if these indices are sufficiently cor-

related. In audio codecs such as AAC, temporal correlations are exploited by

time-to-frequency transforms, and transform coefficients from adjacent frames

are somewhat less correlated. Therefore (inter-frame) prediction is infrequently

employed in transform-based audio coders, and this delayed decoding approach

is less relevant to such settings. Hence the reason for a different coding scenario

from AAC of Sec. 1.1. Nevertheless, it needs to be emphasized that even the

7



simple DPCM setting considered here is very relevant in practice, and the effi-

cacy of the methods proposed here has indeed been successfully demonstrated by

implementation in the H.264 video decoder [39], although we exclude this latter

work from the scope of this thesis. The proposed delayed decoding approaches

are also useful in so called ‘low-delay’ or ‘low-complexity’ applications such as

audio/speech coding for blue-tooth head-sets [1], image sensing [53], etc., where

traditional transform-based coders are rejected in favor of predictive coders, due

to the lower complexity (hence lower power requirements), and lesser encod-

ing/decoding delays (compared to the bocking delay of transforms).
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Chapter 2

Delayed Decision based Audio

Compression

Audio compression has been fundamental to the success of many applications

including streaming of music over the internet and hand-held music playback

devices. Digital radio and gaming audio are other relatively new applications

utilizing compressed audio. Most current audio coding techniques use psychoa-

coustic criteria to discard perceptually irrelevant information in the audio sig-

nal and achieve better compression. MPEG’s AAC [43], [44], Sony’s Adaptive

Transform Acoustic Coder (ATRAC) [4], Lucent Technologies’ Perceptual Au-

dio Coder (PAC) [81], and Dolby’s AC3 [28] are a few well known audio codecs.

Descriptions of these coding techniques and general information regarding audio

coding can be found in [72]. These techniques usually analyze the audio signal

one frame or a small group of frames at a time and make encoding decisions on

them, independently of other frames or frame-groups, thereby restricting encod-
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ing delay. Restricted encoding delay enables real-time audio coding. But for the

majority of audio coding applications, including those previously mentioned, com-

pression is performed off-line. Hence the end user decodes pre-compressed audio

and is not affected by any encoding delays. Moreover, encoding is a one time pro-

cedure while the coded audio is typically decoded many times. Thus, we propose

here a coding technique that exploits encoding delay to make optimal decisions

over the entire audio file, rather than processing each frame independently. The

generated bitstream is standard compatible and decodable by standard decoder

at no additional decoding delay.

As an example consider AAC (Fig. 2.1). The audio signal is split into overlap-

ping frames. Depending on the stationarity of the signal, the framing is switched

between a LONG window of 2048 samples and 8 SHORT windows of 256 sam-

ples each. Transition frames of suitable shape act as bridge windows between

these configurations and this ‘window switching’ decision induces a one frame

encoding delay. Subsequently, a time to frequency transformation is performed

on the frame. The frequency domain coefficients are grouped into bands of un-

equal bandwidths to emulate the critical band structure of the human auditory

system [88]. A psychoacoustic model provides masking thresholds for each of

these bands, which determine the threshold of audibility of quantization noise in

the bands. In AAC, a generic quantizer scaled by a parameter called the scale

factor (SF) is used to quantize all the coefficients in the same band, and hence

these bands are named scale factor bands (SFBs). The quantized coefficients in

each SFB are then losslessly encoded using one of a prescribed set of Huffman

code books (HCBs). Encoders try to find a set of SFs and HCBs that minimize

a psychoacoustic distortion measure while satisfying a bit-rate constraint for the
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frame. Though the target to be achieved maybe a particular mean bit-rate (av-

erage across frames) or file size, the instantaneous bit-rate, i.e., for individual

frames, can fluctuate around this mean. This feature is generally implemented

using a bit-reservoir technique wherein rate unused by frames of low demand is

“saved” for use in later frames. Optional tools such as Temporal Noise Shaping

and Perceptual Noise Substitution are not discussed here.

Figure 2.1. Schematic of a simple AAC encoder

The point to note is that the encoding procedure as described above makes

decisions regarding each frame almost independently, with few minor exceptions:

Due to window switching, the encoder encounters a delay of one frame to de-

cide about transition windows. The bit-reservoir, in a limited sense, makes the

encoding process dependent on past frames. But this encoding scheme, due to
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its constrained delay, cannot foresee the demand for bits in future frames and

deliberately save bits at some cost to the current frame. The drawbacks of this

encoding procedure will be discussed in detail. For now, suffice it to say that

constraining the encoding delay produces a bitstream of sub-optimal quality.

Thus there is merit in increasing encoding delay to search exhaustively over

all combinations of encoding parameters, and choose the optimal set. But this

may be computationally daunting. AAC, for example, provides a choice of 12

HCBs and nearly 60 SFs for each SFB. There are usually 49 SFBs in the LONG

configuration and 56 SFBs for the 8 SHORT windows, although the exact number

depends on other parameters such as sampling rate and short window grouping

decisions [43], [44]. Including the choice of window configurations for each frame,

a conservative estimate of such complexity would be (2 × (60 × 12)49)N for an

audio file of N frames, i.e., exponential in the number of SFBs and frames. So

it is desirable to pursue a dynamic programming [11] based approach with a

corresponding trellis to search through these choices.

It is obvious that the search for the ‘optimal’ encoding parameters presupposes

a criterion or distortion measure to compare the effects of various choices of these

parameters. The most commonly used audio distortion measure is the NMR [14],

[67], [68] - the ratio of quantization noise to masking threshold in each coding

band (SFB in AAC). The distortion for a frame of audio and subsequently for

the entire audio file is usually derived from the NMR. It should be noted that

our methods are fairly general and could accommodate any additive distortion

measure.

The problem of finding the optimal SFs and HCBs within an AAC frame

(i.e., minimizing the frame distortion given a bit budget constraint) has been
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previously addressed in earlier work of our research group [2] and [3], under the

assumption of fixed bit-rate per frame, and that all frames were in the LONG

configuration. Thus no decisions were delayed beyond the given frame. A low-

complexity sub-optimal alternative was proposed in [87]. A mixed integer lin-

ear programming-based solution to the same problem was proposed by Bauer

and Vinton in [8] and was extended to compare window decisions per frame in

[7], where window decisions were independently performed for each frame, while

neglecting dependence through transition windows. Bit-reservoir optimization,

using a tree structured search, was proposed in [19], without optimization of

window decisions or quantization and coding parameters. Rate-distortion opti-

mal time segmentation of audio frames have been proposed in [13], [69], and [70]

without optimization of parameters within a frame or distribution of bits across

all frames.

We emphasize that we are, in fact, optimizing all the encoding decisions (win-

dow choice, SFs and HCBs as well as bit budget per frame) of the aforementioned

simplistic AAC encoder. The eventual results show that there are significant

gains over the reference encoder in terms of both objective metrics and subjec-

tive measures such as MOS scores within the MUSHRA test framework [46], and

for a variety of audio samples drawn from the EBU-SQAM database [89]. The

methods proposed are of higher complexity than the reference encoder but such

complexity only impacts encoding which is typically an off-line operation, while

the end-user does not experience any additional decoding delay. Results of this

work have been reported in [61], [62], and [65].

The organization of this chapter is as follows. Sec. 2.1 provides additional

background to the problem. The problem within the AAC setting is formulated
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in Sec. 2.2. The two-layered trellis solution to the problem is described in Sec.

2.3. Sec. 2.4 summarizes the results.

2.1 Background

2.1.1 MPEG Advanced Audio Coding

The implementation of the proposed approach is in the MPEG AAC setting.

The high-level description of AAC given before is refined here with more details

for the relevant blocks.

Window switching

The audio file is divided into overlapping frames and each frame is multiplied

by a window. The frames are 2048 samples each in the LONG configuration (Fig.

2.2a). If the 1024 samples in the center of the frame (between the dotted lines of

Frame k in Fig. 2.2a) are non-stationary, the frame is instead encoded as a series

of 8 SHORT overlapped windows of 256 samples each (Frame k in Fig. 2.2b)

to achieve better time resolution. Adjacent LONG and SHORT windows, due

to their incompatible shapes, would disrupt the perfect reconstruction properties

of the transform discussed further. This is prevented by replacing the LONG

window preceding a series of SHORT windows with a START window of suitable

shape (Frame k−1 in Fig. 2.2b) and the one succeeding a SHORT window with a

STOP window (Frame k +1 in Fig. 2.2b). Window switching was first suggested

for audio coding by Edler in [26]. Window switching decisions are usually made

by the psychoacoustic model, based on heuristic thresholds of perceptual entropy
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(b) Frame k in SHORT configuration

Figure 2.2. Frame k in LONG and SHORT configurations and corresponding

effect on neighboring LONG frames

[49] or transient detection [90], [91].

Modified discrete cosine transform (MDCT)

Each audio frame is transformed to the frequency domain using the forward

MDCT [55], [73], [79]. Despite requiring overlapped frames, the MDCT is criti-

cally sampled. MDCT of a LONG (also START and STOP) frame yields 1024

transformed coefficients and 128 coefficients for each SHORT block (or 1024 total

for the 8 SHORT windows). More on the MDCT in Sec. 3.2.2.

Quantization and coding (QC) module

The quantization and coding module receives MDCT coefficients grouped

into SFBs and corresponding masking thresholds from the psychoacoustic model,

selects the SFs and HCBs, and quantizes and encodes the coefficients. The differ-

ence in SF values of consecutive SFBs is encoded using a single standard specified

Huffman table. The HCB values are run-length coded, i.e., a fixed number of bits

is used to convey the HCB value (whenever it changes from an SFB to the next),
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and the number of consecutive SFBs having the same HCB. The SF and HCB

bits thus consume part of the bit-rate and have to be accounted for in the rate cal-

culation. In the MPEG verification model (VM) [90] the implicit rate-distortion

trade-off is accomplished using a two loop search (TLS). The TLS inner loop is

a distortion loop that searches through the set of SFs for each SFB such that

a near-uniform target NMR is maintained across SFBs. Once this is achieved

the encoder steps into the outer, rate loop, finds the best HCBs to encode the

quantized spectra and calculates the total number of bits consumed by the frame.

If the rate constraint for that frame is not met the target NMR is increased (to

spend fewer bits), and the inner loop executed again.

Bit reservoir

AAC allows coding different frames with a different number of bits, though

achieving a target average bit-rate might still be necessary. The VM implemen-

tation employs a bit-reservoir. If the QC module spends less than the available

bit quota for the frame (e.g., when the frame corresponds to silence), excess bits

may be used by future frames of higher demand.

2.1.2 Distortion measure

A distortion metric for audio coding should be able to properly account for

the various perceptual artifacts caused by coding. Simple measures, such as the

mean squared quantization error of the spectral coefficients, ignore psychoacous-

tic effects, while complicated metrics such as the Perceptual Evaluation of Audio

Quality (PEAQ) [45], [83], entail intractable optimization complexity. The most
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widely used metric is NMR [14], [18], [67], [68] which divides the squared quan-

tization error in a coding band (SFB) by the band’s masking threshold.

Consider a frame of AAC whose MDCT coefficients have been grouped into

L SFBs. Let ei be the squared quantization error of the coefficients in SFB i.

Let µi be the reciprocal of the masking threshold in the band. The NMR, di, in

SFB i is given by

di = µiei, 0 ≤ i ≤ L − 1 (2.1)

Several variants of the frame distortion can be derived from the above definition,

for example, the total NMR (TNMR) denoted by DT , is

DT =
L−1∑

i=0

di (2.2)

In [3], [7], [67], [68] the average NMR (ANMR), i.e., NMR averaged across SFBs

has been used (clearly, ANMR = DT /L). Since the number of SFBs varies for

LONG and SHORT windows, TNMR is used in this work for a fair comparison

between window configurations. Note that L in the SHORT configuration corre-

sponds to the total number of SFBs of the 8 SHORT windows together. Alterna-

tively, the distortion of a frame could be defined as the maximum NMR (MNMR)

[3], [7], [68], [87], DM , across all SFBs, i.e.,

DM =
L−1
max
i=0

di (2.3)

Using the above as building blocks we can extend to consider distortion eval-

uation for the entire audio file (say of N frames):

Average TNMR (ATNMR) : DAT =
1

N

N−1∑

k=0

DT (k) (2.4)

Maximum TNMR (MTNMR) : DMT =
N−1
max
k=0

DT (k) (2.5)

Maximum MNMR (MMNMR) : DMM =
N−1
max
k=0

DM(k) (2.6)
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DT (k) and DM(k) denote the distortion of frame k according to TNMR of (2.2)

and MNMR of (2.3), respectively. It is important to note that there is no single

audio distortion measure that is known to capture well, all artifacts produced by

restricted bit-rate audio coding and the consideration of all the above candidates

will demonstrate the generality of the proposed approach.

2.1.3 Problem motivation and challenges

Window switching

As already mentioned, current encoders rely on heuristics to make decisions

about window switching. But such decisions are not optimal in the sense of min-

imizing a pre-specified distortion measure. One approach (see [7] and [13]) is

to design an encoder that compares the frame distortion under different window

configurations and makes a window choice for that frame. But different windows

encompass a different number of samples, as is evident in Fig. 2.2, and such

comparison would not be fair. In addition, two consecutive frames cannot inde-

pendently be encoded as a LONG-SHORT pair and thus, independent window

choices for each frame may not form an ‘allowable’ window sequence. One could,

on the other hand, compare distortion in two sequences of window decisions which

start and end in the same audio samples, for instance, the LONG-LONG-LONG

sequence of Fig. 2.2a and START-SHORT-STOP sequence of Fig. 2.2b. This of

course entails delay. This simple example provides motivation for investigating

delayed decisions for window switching.
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Bit reservoir

The bit-reservoir of VM allows a frame to utilize bits saved (i.e., unused)

in the past but cannot “borrow from the future”. Nor can it optimally borrow

from the past, as the encoder cannot anticipate future needs. Some encoders,

including 3GPP’s Enhanced AACplus [91] encoder, intentionally save some bits

for future use by employing perceptual entropy based algorithms that specify

the bit requirement for a frame. Such algorithms involve heuristic thresholds.

Fig. 2.3 compares the effect on distortion (TNMR) due to the distribution of bit

resource according to VM versus MTNMR minimization by the delayed-decision

approach discussed later. The spikes in TNMR values for VM correspond to

artifacts caused by a lack of sufficient bits in non-stationary frames of the audio

sample (glockenspiel). It is evident that delayed decision redistributes bits to

mitigate such coding artifacts.
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Figure 2.3. Distribution of rate and distortion (TNMR) across frames when using

the VM and delayed-decision based approach for glockenspiel at 16 kbps
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Quantization and coding module

TLS, as described previously, separates the calculation of rate and distor-

tion into individual loops and does not simultaneously control them. Moreover,

SFs for consecutive SFBs are differentially encoded, and HCBs are run length

encoded. Hence, selecting these parameters for each band independently is sub-

optimal. The trellis-based optimal parameter selection of [2] and [3] is a rate-

distortion optimal alternative to TLS. But the procedure there was based on the

assumption that the bit-rate for each frame was fixed. Modifications are neces-

sary to incorporate this trellis into a system that relies on delayed decisions for

distributing bits to frames. Another limiting assumption was that all windows

were encoded in the LONG configuration. Modifications are also necessary to

jointly deal with 8 SHORT frames.

2.2 Joint Selection of Encoding Parameters:

Problem Formulation

We describe here the problem formulation in the AAC setting.

2.2.1 Problem setting

Consider an audio file of N frames. Frame k (0 ≤ k ≤ N−1) is associated with

a window configuration wk from the set { LONG, START, SHORT, STOP }.

The number of SFBs Lk in frame k depends on the window configuration. In the

SHORT configuration, Lk corresponds to the number of SFBs of all 8 SHORT
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windows. SFB i of frame k is associated with a scalefactor sk
i and Huffman code

book hk
i (0 ≤ i ≤ Lk − 1). Parameters sk

i and hk
i take value in finite sets of

SF and HCB choices as prescribed in the AAC standard. Thus the intra-frame

decisions produce Lk-tuples Sk = (sk
0, . . . , s

k
Lk−1) and Hk = (hk

0, . . . , h
k
Lk−1). All

the above encoding parameters for a frame are summarized in Pk = (wk, Sk, Hk).

Additionally, we denote by xk the segment of 2048 audio samples encompassed

by frame k in the LONG configuration. Clearly, other window configurations use

a subset of xk.

The number of bits of information representing frame k depends on the actual

samples it contains and the choice of encoding parameters and is, hence, denoted

by B(xk, Pk). An average rate constraint R is imposed on the encoding process,

i.e.,

1

N

N−1∑

k=0

B(xk, Pk) ≤ R (2.7)

The window decisions sequence is also constrained so that a START window is

always used when transitioning from a LONG to a SHORT window, and a STOP

window is inserted between SHORT and LONG windows. These conditions will

be referred to as the Window Switching Constraints .

2.2.2 Rate and distortion calculation

The information, in the bitstream, about SFB i of frame k can be summarized

as follows:

• We denote by Q(xk, wk, s
k
i , h

k
i ) the number of bits needed to encode the

spectral coefficients in SFB i, as it naturally depends on the audio samples

in the frame, xk, in addition to the quantizer (scalefactor sk
i ), the huffman
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code book hk
i and the window choice wk (which influences the transform

applied on xk and hence the unquantized spectral coefficient values).

• The scalefactor sk
i is transmitted as sk

i −sk
i−1. Therefore the scalefactor bits

for SFB i can be written as E(sk
i−1, s

k
i ) (with sk

−1 = 0).

• The run-length encoding of HCBs produces a fixed number of bits to in-

dicate the run-length whenever hk
i 6= hk

i−1 and 0 bits otherwise. Thus the

number of HCB information bits for SFB i is of the form F(hk
i−1, h

k
i ) (with

hk
−1 6= hk

0).

Additionally, the encoder conveys the window configuration using G(wk) bits.

Thus the total number of bits to encode the frame with parameters Pk can be

enumerated as,

B(xk, Pk) = G(wk) +
Lk−1
∑

i=0

{

Q(xk, wk, s
k
i , h

k
i ) + E(sk

i−1, s
k
i ) + F(hk

i−1, h
k
i )

}

(2.8)

where the number of SFBs Lk depends on wk.

The psychoacoustic model produces a masking threshold for each SFB of a

frame by analyzing it in the frequency domain. Thus, the weight µi in (2.1) is a

function of the audio signal xk and the transform (and hence wk) used for time to

frequency conversion. Similarly, the squared quantization error ei depends on the

quantizer (i.e., scalefactor sk
i ) and the unquantized transform coefficients. Thus,

using (2.1), the distortion di in SFB i of frame k can be represented as,

di(xk, wk, s
k
i ) = µi(xk, wk)ei(xk, wk, s

k
i ) (2.9)

The above definition of di is subsequently used in (2.2) or (2.3) to obtain the

frame distortion. In either case we employ the generic notation D(xk, Pk), where
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it is clear from the context whether DT (k) or DM(k) is in use. The distortion

of the entire file is then obtained from (2.4) - (2.6). Let the encoding parameter

set for the entire file be P = (P0, . . . , PN−1), while X represents the entire audio

signal itself. The overall distortion, therefore, can be denoted as D(X ,P), and

the overall bit consumption is given by

B(X ,P) =
N−1∑

k=0

B(xk, Pk) (2.10)

Note that Hk is specified in Pk and needed to determine the rate, but it plays no

role in determining the value of D(xk, Pk), as is evident from (2.9).

2.2.3 Problem definition

Find the parameter set P∗ that minimizes the overall distortion, i.e.,

P∗ = arg min
P

D(X ,P) (2.11)

subject to the rate constraint 1
N
B(X ,P) ≤ R and the window switching con-

straints of Sec. 2.2.1.

Depending on the choice of definition of D(X ,P) from (2.4) - (2.6) we have

three different problems which will be referred to as the ATNMR, MTNMR,

and MMNMR problems , respectively.
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2.3 Optimization with a Two-Layered Trellis

2.3.1 Minimizing average overall distortion

We address here the problem of minimizing the average distortion of the file,

D(X ,P) =
1

N

N−1∑

k=0

D(xk, Pk) (2.12)

given the rate constraint (2.7). Note that if D(xk, Pk) is defined as TNMR (2.2)

then D(X ,P) would be ATNMR (2.4). The above problem is similar to the classi-

cal problem of minimizing average distortion of quantizers given a rate constraint.

The problem was originally addressed for independent quantizers in [80] and later

for dependent quantizers in [74] using a Langrangian based iterative procedure.

The constrained optimization problem is converted to that of minimizing the

Lagrangian cost,

JA(X ,P) = D(X ,P) + λ
1

N
B(X ,P), (2.13)

where λ is the Lagrange parameter. Rewriting (2.13) as a summation over frames

we obtain,

JA(X ,P) =
N−1∑

k=0

JA(xk, Pk) (2.14)

where,

JA(xk, Pk) =
1

N
{D(xk, Pk) + λB(xk, Pk)} (2.15)

is the contribution of a particular frame to the Lagrangian cost. Minimization of

JA(X ,P) for a specific value of λ yields an operating point on the rate-distortion

curve. One may adjust λ and re-optimize until the rate constraint is satisfied, to

obtain the choice of parameters P∗ = (P ∗
0 , . . . , P ∗

N−1) that minimize the distortion
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in (2.12) under the constraint (2.7). Note that JA(xk, Pk), the Lagrangian cost

for frame k, is independent of encoding decisions Pl, l 6= k and therefore,

min
P

JA(X ,P) =
N−1∑

k=0

min
P

JA(xk, P ) (2.16)

where P = (w, S, H) is a generic point in the encoding parameter space for a

single frame. Thus, for a given value of λ, the overall minimization problem

seems separable into N intra-frame minimization problems. Note, however, that

Pk = (wk, Sk, Hk) depends on the window choice. Independent minimization of

JA(xk, Pk) over all window choices may violate the window switching constraints

and yield incompatible windows for neighboring frames, as discussed in Sec. 2.1.3.

To circumvent this difficulty we define the minimum frame Lagrangian for a given

window configuration w as,

J∗
k(w) = min

S,H
JA(xk, {w, S, H}), (2.17)

∀w ∈ {LONG, START, SHORT, STOP}

The dependence of J∗
k (·) on xk is implicit in the subscript k. The above min-

imization which will henceforth be referred to as the Intra-frame Minimiza-

tion Problem I is discussed in Sec. 2.3.3. Assume for now that for every frame

k the above minimum cost J∗
k(w), the minimizing parameters S∗

k(w) and H∗
k(w),

corresponding distortion D∗
k(w) and frame bit consumption B∗

k(w) have been

calculated for every window configuration w. The overall cost JA is, therefore,

minimized by the window decisions w∗
0, . . . , w

∗
N−1 given by,

(w∗
0, . . . , w

∗
N−1) = arg min

(w0,...,wN−1)

N−1∑

k=0

J∗
k (wk) (2.18)

with (w0, . . . , wN−1) obeying the window switching constraints (Sec. 2.2.1). The

search complexity of the above problem can be reduced drastically while simul-

taneously imposing these constraints by using a trellis-based search, such as the
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Viterbi algorithm [31], [84]. A trellis (the Outer Trellis in Fig. 2.4) is con-

Figure 2.4. Two-Layered Trellis: The Window Switching Trellis (or Outer

Trellis) runs across frames, with states as window choices. The Inner Trellis (in

the inset) spans across SFBs and is used in each node of the Outer Trellis to find

the best intra-frame parameters.

structed with stages corresponding to frames and nodes to window choices per

frame. Transitions are allowed only between compatible window choices, e.g.,

LONG to LONG, LONG to START, etc. Each node is associated with a specific

window decision w and is populated with corresponding quantities J∗
k(w), S∗

k(w),

H∗
k(w), D∗

k(w), and B∗
k(w). The solution w∗

0, . . . , w
∗
N−1 to (2.18) is the path

(w0, . . . , wN−1) through the trellis that minimizes the total cost
∑N−1

k=0 J∗
k (wk)

along that path.

To formally implement the window switching constraints, associate the win-

dow configurations LONG, START, SHORT, and STOP with the numbers 1-4,

respectively. We denote by Wm, 1 ≤ m ≤ 4, the set of window choices which
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could precede the window choice m. For example, W1 = {1, 4} - a LONG win-

dow can only be preceded by a LONG or STOP window. The path of minimum

cost is found as follows:

Outer Trellis Algorithm

1. Initialize. For 1 ≤ m ≤ 4, set partial sum Υ(m) = J∗
0 (m). Set counter

k = 1.

2. Search. For 1 ≤ m ≤ 4, in stage k, find back pointer

Ψk(m) = arg min
n∈Wm

Υ(n) .

3. Update. For 1 ≤ m ≤ 4, set partial sum Υ(m) = Υ(Ψk(m)) + J∗
k (m).

4. Next Stage. Increment k. If k < N go to step 2.

5. BackTrack. Winning path ends in w∗
N−1 = arg min1≤m≤4 Υ(m). Set k =

N − 1. While k 6= 0, do {w∗
k−1 = Ψk(w

∗
k), k = k − 1}.

At each stage, only 4 paths survive and the complexity of this search is linear in

N . As is evident, the trellis search naturally incorporates the window switching

constraints, hence the name Window Switching Trellis. It is also called the Outer

Trellis to differentiate from the Inner Trellis (inset of Fig. 2.4) that will be used

to solve (2.17). If the rate 1
N

∑N−1
k=0 B∗

k(w
∗
k) associated with the winning path

does not satisfy the rate constraint (2.7), λ is adjusted, the minimization of

(2.17) redone for each frame and in all window configurations, the outer trellis

re-populated, and the above search repeated. When the rate constraint is met the

decisions associated with the winning path are the optimal decisions minimizing

the overall distortion given by (2.12).
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2.3.2 Minimizing maximum overall distortion

Here,

D(X ,P) =
N−1
max
k=0

D(xk, Pk) (2.19)

Depending on whether D(xk, Pk) is defined according to TNMR (2.2) or MNMR

(2.3), the resulting D(X ,P) will be either MTNMR (2.5) or MMNMR (2.6). A

Lagrangian solution is not applicable here due to the min-max nature of the

problem. Nevertheless, a trellis-based approach offers an effective means to find

the solution. Let parameter γ specify the maximum overall distortion:

D(X ,P) ≤ γ

⇒ D(xk, Pk) ≤ γ, 0 ≤ k ≤ N − 1 (2.20)

We now find the set of encoding parameters P∗ that minimizes the total rate

1
N
B(X ,P) subject to the above distortion constraint, i.e., the cost function to be

minimized is,

JM(X ,P) =
1

N
B(X ,P)

=
N−1∑

k=0

JM(xk, Pk) (2.21)

where JM(xk, Pk) = 1
N

B(xk, Pk) is the corresponding cost function for frame k.

If the rate thus found exceeds the rate constraint in (2.7), γ can be increased

(allow more distortion in each frame) and the minimization repeated. Thus we

now iterate over γ, similar to the iteration over λ in Sec. 2.3.1. We can again

split the overall minimization into N separate minimizations as below.

min
P s.t.

D(X ,P) ≤ γ

JM(X ,P) =
N−1∑

k=0

min
P s.t.

D(xk, P ) ≤ γ

JM(xk, P ) (2.22)
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where we have used (2.20). The window switching constraints again forbid in-

dependent minimization. Thus the corresponding minimum cost for a frame in

window configuration w is defined as,

J∗
k(w) = min

S, H s.t.

D(xk, P ) ≤ γ

JM(xk, {w, S, H}) (2.23)

∀w ∈ {LONG, START, SHORT, STOP}

The above minimization is referred to as Intra-frame Minimization Prob-

lem II and will be discussed in Sec. 2.3.4 which derives the optimal cost J∗
k (w)

and corresponding S∗
k(w), H∗

k(w), D∗
k(w), and B∗

k(w) for populating the Window

Switching Trellis. The Outer Trellis Algorithm of Sec. 2.3.1 finds the best path

(decisions) through the trellis. The rate can be adjusted by varying γ, repeating

the minimization of (2.23), re-populating the trellis, and finding the winning path

again.

It should be noted that in Sec. 2.3.1 and Sec. 2.3.2 the best path is decided

at the end of the Window Switching Trellis, thereby clearly implementing de-

layed decisions. Additional delay is due to iterations over λ or γ values, but such

delay can be substantially contained by complexity reduction techniques to be

discussed later.

2.3.3 Intra-frame minimization problem I

In Sec. 2.3.1 we assumed that the solution to (2.17) is available. The problem

is rewritten here in equivalent form: for frame k, in a specific window configura-
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tion w, we need to find,

{

S∗
k(w), H∗

k(w)
}

= arg min
S,H

1

N

{

D(xk, {w, S, H}) + λB(xk, {w, S, H})
}

(2.24)

The solution entails a search over all possible combinations of SFs and HCBs,

a space whose cardinality is exponential in the number of SFBs. Based on [2]

and [3], S∗
k(w) and H∗

k(w) can be obtained in a computationally efficient manner

when the frame distortion D(xk, P ) is defined as TNMR or MNMR calculated

over the SFBs. In the former case we specifically write

D(xk, P ) =
Lk−1
∑

i=0

di(xk, w, si) (2.25)

This in conjunction with (2.8) and (2.24) and noting that G(wk) of (2.8) is inde-

pendent of Sk and Hk yields,

{

S∗(w), H∗(w)
}

= arg min
S,H

L−1∑

i=0

{ di(w, si) + λ
(

Q(w, si, hi)

+E(si−1, si) + F(hi−1, hi)
)

}

(2.26)

where the frame index k is implicit and the dependence on the deterministic audio

segment xk has been omitted to simplify notation. The above minimization can

be realized using the Inner Trellis of Fig. 2.4 which has SFBs as stages and states

corresponding to combination of SF and HCB values. Thus each state of stage

i (SFB i) can be indexed by an ordered pair (u, v) denoting si = u and hi = v,

associated with distortion di(w, u) and quantization bits Q(w, u, v). A transition

from state (u′, v′) in stage i − 1 to state (u, v) in stage i is associated with the

rate costs E(u′, u) and F(v′, v) to encode (si, hi). A path through this trellis

corresponds to SF and HCB sequences S and H , respectively. We seek the path

that minimizes the cost in (2.26). We define the cost for a node (u, v) in stage i

as

Πi(u, v) = di(w, u) + λQ(w, u, v) (2.27)
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and for transition (u′, v′) of stage i − 1 to (u, v) of stage i as

∆i ((u
′, v′) → (u, v)) = λ (E(u′, u) + F(v′, v)) (2.28)

The path of minimum cost is found as follows:

Inner Trellis Algorithm

1. Initialize. ∀(u, v) partial cost Γ(u, v) = Π0(u, v) + ∆0 ((u′, v′) → (u, v))

with u′ = 0 and v′ 6= v being forced (Sec. 2.2.2). Set i = 1.

2. Search. ∀(u, v) of stage i find back pointers

Θi(u, v) = arg min
(u′,v′) in stage i−1

{

Γ(u′, v′) + ∆i ((u
′, v′) → (u, v))

}

.

3. Update. ∀(u, v) update partial cost

Γ(u, v) = Γ(Θi(u, v)) + ∆i (Θi(u, v) → (u, v)) + Πi(u, v) .

4. Next Stage. Increment i. If i < L go to step 2.

5. Back Track. Winning path ends in

(s∗L−1, h
∗
L−1) = arg min

(u,v) in stage L−1
Γ(u, v)

Set i = L − 1. While i 6= 0, do {(s∗i−1, h
∗
i−1) = Θi(s

∗
i , h

∗
i ), i = i − 1}.

In step 2 of the above algorithm, only one path into any state survives and thus

after each stage there are as many paths as states. Hence the complexity of the

above algorithm is linear in the number of SFBs. The algorithm when performed

for frame k in window configuration w, gives the best SF and HCB sequence

S∗
k(w), H∗

k(w) in (2.24), and corresponding distortion D∗
k(w). The cost and rate
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associated with the winning path in the above algorithm, in conjunction with the

contribution from G(w) of (2.8) give B∗
k(w) and J∗

k(w) of (2.17) used in the outer

trellis of Sec. 2.3.1.

ATNMR solution: Using the above algorithm in tandem with Sec. 2.3.1 we

can now enumerate a Two-Layered Trellis-based solution to the ATNMR problem

(Sec. 2.2.3):

1. Initialize. Select a value of Lagrangian parameter λ.

2. Inner Trellis. For each frame k and in each window configuration w, us-

ing the Inner Trellis Algorithm and node and transition costs as defined

in (2.27) and (2.28), respectively, find S∗
k(w), H∗

k(w), D∗
k(w), J∗

k(w), and

B∗
k(w) and populate the outer trellis.

3. Outer Trellis. Using the Outer Trellis Algorithm find the best window

decisions w∗
0, . . . , w

∗
N−1 and consequently P ∗

k = (w∗
k, S

∗
k(w

∗
k), H

∗
k(w∗

k)) ∀k,

overall rate B(X ,P∗), and distortion D(X ,P∗).

4. Iterate. Check rate B(X ,P∗) against rate constraint. If satisfied go to step

5, else change λ and go to step 2.

5. Encode. Use the optimal parameter set P∗ to encode the audio file.
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2.3.4 Intra-frame minimization problem II

We address here the minimization problem in (2.23), i.e., for frame k, in

window configuration wk,

{

S∗
k(w), H∗

k(w)
}

= arg min
S, H

D(xk, P ) ≤ γ

1

N
B(xk, {w, S, H}) (2.29)

As in Sec. 2.3.3, a computationally efficient minimization is possible if the frame

distortion D(xk, P ) is in the form of sum or maximum of SFB distortions. We

describe the solution here for the maximum case, i.e.,

D(xk, P ) =
Lk−1
max
i=0

di(xk, w, si) (2.30)

Combined with the distortion constraint in (2.29) it implies that

di(xk, w, si) ≤ γ , ∀i . (2.31)

Using (2.8) and (2.31), we can now rewrite (2.29) as

{

S∗(w), H∗(w)
}

= arg min
S, H

di(w, si) ≤ γ ∀i

L−1∑

i=0

(Q(w, si, hi) + E(si−1, si) + F(hi−1, hi))

(2.32)

where, as usual, we omit index k, the dependence on xk, and the term G(w). We

use the same inner trellis as in Sec. 2.3.3 to perform the minimization of (2.32)

but the node and transition costs (2.27), (2.28) are redefined as,

Πi(u, v) =







Q(w, u, v) if di(w, u) ≤ γ

∞ otherwise
(2.33)

∆i ((u
′, v′) → (u, v)) = E(u′, u) + F(v′, v) (2.34)

The Inner Trellis Algorithm described in Sec. 2.3.3 can be subsequently used to

find S∗
k(w), H∗

k(w) of (2.29), the corresponding distortion D∗
k(w) as well as the
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rate cost of the winning path. This, along with G(w) of (2.8) gives the minimum

cost J∗
k (w) of (2.23) and can be used in the outer trellis method of Sec. 2.3.2.

MMNMR solution: We can now solve the MMNMR problem using the

above algorithm and the method described in Sec. 2.3.2, in a Two-Layered Trellis

framework.

1. Initialize. Select a value of the maximum distortion parameter γ.

2. Inner Trellis. For each frame k and in each window configuration w, using

the Inner Trellis Algorithm with node and transition costs of (2.33) and

(2.34), find S∗
k(w), H∗

k(w), D∗
k(w), J∗

k (w), and B∗
k(w) and populate the

outer trellis.

3. Outer Trellis. Using the Outer Trellis Algorithm find the optimal window

decisions w∗
0, . . . , w

∗
N−1 and consequently P ∗

k = (w∗
k, S

∗
k(w

∗
k), H

∗
k(w∗

k)) ∀k,

overall rate B(X ,P∗), and distortion D(X ,P∗).

4. Iterate. Check rate B(X ,P∗) against the rate constraint. If satisfied go to

step 5, else change γ suitably and go to step 2.

5. Encode. Use decisions P∗ to encode the audio file.

The MTNMR problem, a hybrid of maximum and cumulative distortions,

requires the solution of (2.23) but with the frame distortion D(xk, P ) being the

sum (TNMR) of SFB distortions. Therefore (2.23) can be seen as equivalent

to finding parameters that minimize the rate B(xk, P ) given a constraint on a

cumulative distortion criterion. This is a dual of the problem where the rate for

a frame is fixed and parameters that minimize average (or total) distortion have
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to be found [2], [3], [7], [8] and can still be solved using the Lagrangian approach

described in Sec. 2.3.3.

MTNMR solution:

1. Initialize. Select a value of the maximum distortion parameter γ.

2. Inner Trellis. For each frame k and in each window configuration w do the

following:

(a) Select a value of intra-frame Lagrangian parameter λinner.

(b) Using the Inner Trellis Algorithm with cost definitions (2.27) and

(2.28) and setting λ = λinner find S∗
k(w), H∗

k(w), D∗
k(w), J∗

k (w), and

B∗
k(w).

(c) Check D∗
k(w) against γ. If satisfied go to step (d) else change λinner

and go to step (a).

(d) Populate the corresponding outer trellis node with S∗
k(w), H∗

k(w),

D∗
k(w), J∗

k (w), and B∗
k(w).

3. Outer Trellis. Using the Outer Trellis Algorithm find the best window de-

cisions w∗
0, . . . , w

∗
N−1, P ∗

k = (w∗
k, S

∗
k(w

∗
k), H

∗
k(w

∗
k)) ∀k, overall rate B(X ,P∗),

and distortion D(X ,P∗).

4. Iterate. Check rate B(X ,P∗) against the rate constraint. If satisfied go to

step 5 else change γ suitably and go to step 2.

5. Encode. Use decisions P∗ to encode the audio file.

Note: If γ, the allowed distortion in each frame, is too small, it is possible that

no choice of parameter sets S and H achieves it, i.e., the parameter space for the
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minimization in (2.23) could be a null set for certain frames in particular window

configurations w. In such a case, D∗
k(w) in step 2(c) of above algorithm will not

be less than γ for any value of λinner and, unless fixed, results in an infinite loop.

This pathology can be avoided by including an appropriate exit condition in the

program. For example, it is easily seen that a low value of λinner favors decreasing

distortion D∗
k(w) at the cost of increasing rate B∗

k(w). So λinner could be bound

to be greater than a minimum value ζ . If the distortion D∗
k(w) > γ in step 2(c)

even if λinner = ζ , then a forced exit is made from step 2(c) with the cost J∗
k (w)

being explicitly set to ∞.

2.3.5 Modifications for SHORT configuration

The SHORT window configuration requires some modifications to the inner

trellis design of [2] or [3]. The 8 SHORT windows in the frame must be encoded

jointly, i.e., the QC module (the inner trellis) analyzes the SFBs of all 8 windows

and jointly determines their SFs and HCBs. Let Ls denote the number of SFBs

per SHORT window. The AAC bitstream format dictates that the information

regarding the Ls SFBs of the first SHORT window appear first, followed by that of

the second and so on. Note that both differential encoding of SFs and run length

encoding of HCBs requires the imposition of ordering on the SFBs. The AAC

standard allows differential encoding of SFs across SHORT window boundaries

within a frame (e.g., the SF of the first SFB in the second SHORT window may

be encoded as a difference from that of the last SFB in the first SHORT window),

but it restricts run length coding of HCBs from extending beyond the SHORT

window boundary. Therefore, the inner trellis has 8Ls stages, corresponding

to the SFBs of all 8 SHORT windows. Transition costs ((2.28), (2.34)) which
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straddle across SFBs of two adjacent SHORT windows are allowed the usual SF

contribution of E(si−1, si) but artificially forced to have a non-zero F(hi−1, hi)

contribution even if hi−1 = hi (See Sec. 2.2.2).

Additionally, the AAC standard allows ‘grouping of SHORT windows’ where

the encoder can identify consecutive SHORT windows within a frame with similar

characteristics and interleave their spectra into a shared set of SFBs [43], [44].

For example, a frame of 8 SHORT windows could be partitioned into three groups

of 2, 3 and 3 windows. Windows in the same group share SFs and HCBs for the

same SFB. This is accommodated in the inner trellis by using stages as grouped

SFBs rather than individual window SFBs.

Since there are 8 windows, 127 groupings are possible and the grouping choice

is an additional encoding parameter in the SHORT configuration. But all of these

groupings span the same number of audio samples and hence the minimizations

in (2.17) and (2.23) can be performed in each grouping configuration to select

the optimal grouping, and appropriately populate the SHORT node of the outer

trellis.

2.3.6 Complexity reduction

The complexity (or encoding time) can be considerably reduced via memory

trade-off. All the above methods require multiple traversals of the audio file,

iterating over λ or γ. But the distortion and number of bits associated with a

given state of the inner trellis do not depend on the values of these iteration

parameters. Thus, concurrent computation of costs for multiple values of λ or

γ can eliminate redundant effort. This is akin to maintaining parallel outer and
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inner trellises each running at a different value of λ or γ while sharing per state

results. If a wide and finely divided range of these iteration parameters is used, the

best decisions can be obtained in a single traversal of the audio file. Additionally

one could also find the best decisions for a range of encoding rates, if desired.

The hybrid nature of the MTNMR problem necessitates additional iterations

over the inner parameter λinner to satisfy a specific distortion constraint γ. The

maintenance of parallel trellises as described above helps to reuse such iterations

for different values of γ.

2.3.7 Generalization to other codecs

The delayed decisions (beyond the frame) are implemented by the outer Win-

dow Switching Trellis. The computational efficiency of the trellis is due to the

fact that, in AAC, distortion D(xk, Pk) and bit usage B(xk, Pk) for frame k are

independent of encoding decisions in other frames. This characteristic is shared

by many other audio codecs, including Lucent’s PAC [81], Dolby’s AC-3 [28] and

Sony’s ATRAC [4]. These codecs analyze audio samples (in the case of ATRAC,

sub-band outputs of a very low resolution QMF) in frames and switch between

different frame resolutions. As in AAC, the frames are encoded separately and

share the available bit resource through heuristic allocation.

Moreover, all the above codecs employ a critical band based analysis within

each frame, find quantizers (SF equivalents) for the frequency domain signal using

the masking thresholds and, with the exception of AC-3, noiselessly encode the

quantized spectra. Therefore an inner trellis scheme with modified node and

transition costs can be devised for these codecs.
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2.4 Results

We discuss here the experimental setup, including implementation details,

and present simulation results. We first list the codecs under comparison.

1. Reference Model (RM): The MPEG-4 Verification Model [90] using only

the psychoacoustic model, TLS, bit-reservoir and transient detection based

window switching with a restricted set of 8 window grouping choices.

2. Inner-Trellis-only models RM-TB(T) and RM-TB(M): use the same blocks

as the RM except that greedy TLS is replaced by the trellis-based parameter

selection of [2] and [3]. Modifications for SHORT windows as described

in Sec. 2.3.5 are used. RM-TB(T) minimizes TNMR and RM-TB(M)

minimizes MNMR within a frame, given a rate constraint. They do not

optimize windows and rate distribution across frames.

3. Outer-Trellis-only models L1-AT, L1-MT, and L1-MM : use the outer trellis

to find the window decisions and bit distributions so as to minimize AT-

NMR, MTNMR, and MMNMR, respectively. The minimum costs in (2.17)

and (2.23) have to be obtained to populate the outer trellis. Since the aim

of these models is to isolate the effect of the outer trellis, a complete min-

imization over all possible SF and HCB sets (S, H in (2.17) and (2.23)),

using the inner trellis, is not effected. Instead a modified TLS is used, in

each frame and in every window configuration, as follows: TLS starts off

at a low value of distortion (NMR) and corresponding high bit-rate. In

subsequent iterations the target NMR is increased in fixed steps till the

specified bit-rate for the frame is achieved. Thus, if the bit-rate constraint

39



in the outer loop is set to 0, TLS passes through all of its operational rate-

distortion points, each corresponding to one (S, H) pair. The minimization

in (2.17) and (2.23) is effected only over this restricted set of (S, H) pairs.

Thus the models L1-AT, L1-MT and L1-MM, by not incorporating the in-

ner trellis, optimize pan-frame decisions but not the choice of parameters

within a frame.

4. Two-Layered Trellis-based models L2-AT, L2-MT, and L2-MM : use the

two-layered trellis-based algorithms (i.e., both inner and outer trellis) to

minimize ATNMR, MTNMR, and MMNMR distortion measures, respec-

tively, for the entire file.

At this juncture we note that though RM, RM-TB(T), and RM-TB(M) can code

different frames with a different number of bits, they are still referred to, in

general parlance, as constant bit-rate (CBR) codecs. Since these codecs employ

a bit-reservoir they ensure that the bitstream can be decoded in real time with

constant delay when transmitted over a constant bit-rate channel. The L1- and

L2- approaches (in which cases too the instantaneous bit-rate fluctuates) would

on the other hand be referred to as average bit-rate (ABR) codecs as they do not

employ a bit-reservoir but are still coded to achieve a target mean bit-rate. In

case of these codecs it might be necessary to buffer a larger chunk of the bitstream

at the decoder before playback starts.

All the trellis-based approaches used the parallelization methods described in

Sec. 2.3.6 for computational efficiency. A set of 10 mono, 16-bit PCM audio files

sampled at 44.1 kHz, from the EBU-SQAM [89] database were used for the tests.

These samples included tonal signals such as the accordion, signals with attacks
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such as harpsichord and glockenspiel, speech and general pop music.

2.4.1 Objective results

Fig. 2.5a compares the gains (reduction in ATNMR) over RM achieved

by: optimizing decisions only across frames (L1-AT), only within frames (RM-

TB(T)), and optimizing both intra- and inter-frame decisions (L2-AT). The dis-

tortion has been averaged over the 10 audio samples. Overall optimization yields

the best gains (3-5 dB over RM). Fig. 2.5b compares the performance of the cor-

responding encoders when the MTNMR measure is optimized. RM shows hardly

any decrease in distortion as the bit-rate is increased. This is due to its sub-

optimal bit distribution. Most audio samples contain critical frames that require

a large number of bits for transparent coding. As the bit-reservoir of RM is inef-

ficient, the maximum distortion (MTNMR) exhibits negligible improvement with

increase in average bit-rate. Note that RM-TB(T) also uses the bit-reservoir and

hence L1-MT outperforms it by achieving better bit-distribution. This trend in

gains is in contrast to the previous case of minimizing average overall distortion

(ATNMR). Fig. 2.5c shows the gains when the MMNMR measure is minimized.

The two-layered trellis approach (L2-MM) achieves gains of 10-12 dB over RM

and about 8 dB over the single-layered trellis approaches, RM-TB(M) and L1-

MM, at various bit-rates. As in the MTNMR case, the outer-trellis-only method

L1-MM beats RM-TB(M) at low bit-rates thanks to efficient bit distribution

across frames. But at higher bit-rates the inner-trellis-only method RM-TB(M)

performs better owing to its improved MNMR minimization in each frame, over

the sub-optimal TLS of L1-MM. Fig. 2.6 compares window decisions based on

transient detection (RM) to that of the Window Switching Trellis (L2-MT), in
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case of the glockenspiel sample. Rate-distortion optimization leads to different

window decisions from that of the RM.
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Figure 2.5. Comparison of the different encoders based on objective measures

2.4.2 Subjective evaluation

The effect of optimizing encoding decisions on subjective quality depends crit-

ically on the ability of the distortion measure to reflect psychoacoustic effects.
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Figure 2.6. Comparison of window decisions made by RM and L2-MT for the

glockenspiel sample. Peaks indicate transitions to SHORT configuration.

Subjective tests indicated that minimizing the MTNMR measure improves audio

quality. MUSHRA tests [46] were conducted with 20 listeners and 6 audio sam-

ples (tenor, harpsichord, accordion, side-drums, male German speech and female

English speech) encoded at 16 kbps. Fig. 2.7 shows the results of these tests.

The MUSHRA scores have been averaged across samples. The two-layered trellis

approach (L2-MT) has the best performance followed by RM-TB(T) and L1-

MT. The reference model RM produces the worst quality of audio. Minimizing

the MTNMR measure is roughly equivalent to maintaining a constant distortion

(TNMR) across frames. The argument for this is as follows: If all the frames

do not have the same distortion, then bits used in frames with lesser distortion

can be reallocated, thus incrementally increasing distortion in these frames while

reducing that in the frame with maximum distortion. This would in effect mini-

mize the overall maximum distortion (MTNMR), but naturally tends to spread

the distortion equally over the frames. This uniformity in distortion, which is

evident in Fig. 2.3, may explain why MTNMR minimization yields improved
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subjective quality, as well as why ATNMR minimization was observed to com-

promise subjective quality. The MMNMR approach also uses maximum overall

distortion. Additionally it considers the maximum distortion amongst SFBs of a

frame too. Hence it effectively maintains uniformity in distortion across all frames

as well as all frequency bands. Yet the MMNMR approach was observed to ac-

centuate some high frequency artifacts, and subjectively it performed somewhat

worse than the MTNMR method.

It should be noted that despite the poorer quality of the ATNMR and MM-

NMR minimization approaches, these methods should not be dismissed. Since

there is no universally precise audio distortion measure, it is possible that future

measures benefit from optimization in the ATNMR or MMNMR fashion. Indeed

in Chapter 3 we describe a modified NMR metric which when optimized in the

MMNMR fashion provides coded audio of excellent quality.
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Figure 2.7. Comparison of MUSHRA scores of RM, RM-TB(T), L1-MT, and

L2-MT for audio encoded at 16 kbps. ‘Ref’ represents the original audio and

‘3.5k’ is the low pass anchor.
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2.4.3 Complexity

The encoding complexity of all the methods is linear in the number of frames.

Therefore we simply compare the average time to encode a frame, normalized by

that of RM, to get the relative figures of complexity shown in Table 2.1. Note

that the delayed decision part of the proposed approach actually comes from the

outer trellis but as the table indicates, using the outer trellis to implement better

window switching and bit-distribution (i.e., the L1- approaches) is only about 15

times more complex than RM. A major contribution to the complexity of the

L2- approaches is actually the inner trellis. This suggests that sub-optimal intra-

frame parameter selection alternatives to the inner trellis could be used to obtain

low complexity delayed-decision based algorithms. One could, for example, prune

the number of transitions possible from one stage of the inner trellis to the next,

as suggested in [3], and thus reduce the number of paths to be compared and

hence the complexity.

Encoder Relative Complexity
RM 1

RM-TB(T,M) 30
L1-(AT,MT,MM) 15

L2-(AT,MM) 450
L2-MT 4500

Table 2.1. Relative figures of complexity of the various encoding methods

Another possibility, in case of the L2-MT approach, is to linearly interpolate

between rate-distortion points for a frame with distortion on the logarithmic scale

to get an approximate λinner that satisfies the bit-rate constraint γ, instead of

iterating over multiple values of λinner as demanded by the MTNMR solution.

Such linear interpolation was observed to reduce the complexity figure of the
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L2-MT approach by a factor of 4 but is sub-optimal (reduction in gains by 0.2

dB).

2.5 Conclusion

In this chapter, we derived a two-layered trellis-based optimization scheme

for audio coding while minimizing three different overall distortion measures -

ATNMR, MTNMR, and MMNMR. The trellis effectively optimizes all the en-

coding decisions of the reference encoder by making delayed decisions regarding

each frame. The delay and one time encoding complexity do not impact the

decoder, and the bitstream generated is standard compatible. Scenarios which

involve off-line encoding of audio may substantially benefit from this overall op-

timization process. Objective and subjective results in the AAC setting support

such a delayed-decision based optimization procedure.
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Chapter 3

Modifications to the Audio

Distortion Metric

In Chapter 2, we developed algorithms for R-D optimized delayed decisions-

based compression of audio. Different algorithms in a two-layered trellis frame-

work were proposed, each for a distinct definition - (2.4), (2.5), or (2.6) - of

the overall distortion. But all these distortion metrics were just variants of the

commonly employed NMR defined as (2.1). The NMR has been the distortion

measure of choice in the quantization and coding module since early audio en-

coders such as the OCF [15], Brandenburg-Johnston hybrid [17], and ASPEC

[16] coders, and was eventually integrated into the encoding schemes specified in

the informative parts of the MPEG standards [42], [43], [44]. Other objective

measurement techniques for audio quality estimation include the auditory spec-

trum distance [51], perceptual audio quality measure (PAQM) [9], PERCEVAL

[71], audible error and error margin of [50], and the more recent PEAQ [45], [83].
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These metrics may be psychoacoustically more accurate than NMR, but they are

too complicated for calculation in the encoding process, and hence do not render

themselves amenable for optimization. Thus, most audio encoder optimization

work in the past has relied exclusively on using the NMR, or its derivatives such

as ANMR, MNMR, MTNMR, etc., [3], [7], [8], [61], [62], [65], [67], [68]. As noted

in Sec. 2.4, although the two-layered trellis results in substantial gains in terms

of the objective measures (i.e., in terms of reduction in the distortion metric),

commensurate gain in terms of subjective quality depends critically on how well

the distortion metric is able to capture coding artifacts. This is evident from the

discussion in Sec. 2.4.2. Therefore, we are motivated to analyze deficiencies if

any in the NMR metric itself, i.e., in its definition by (2.1), and propose simple

modifications to it, so that it is subjectively more accurate. Preliminary results

of this work have been presented in [60] and [63].

The primary function of the distortion metric, in the encoder, is to compare

different choices of encoding parameters by their effect on the coding quality.

This in turn is achieved by comparing the noise due to quantization in different

frequency bands, in terms of their true psychoacoustic cost. The masking thresh-

old incorporated in NMR tries to achieve exactly this. In addition, we identify

two other requirements to ensure an efficient comparison:

• The distortion in each coding band (SFB in AAC) depends not just on the

ratio of the noise spectrum and threshold spectrum (which is what NMR

provides) but ‘how much’ of this ratio is present in each band. This means

that, assuming this ratio is a constant across the band, the distortion metric

needs to be cognizant of the bandwidth of each SFB on a frequency scale

that is relevant to human hearing, i.e., the Bark scale [72, 88]. If all bands
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were of equal width on such a scale, NMR as currently defined would be

appropriate.

• The true estimate of the distortion due to quantization in different fre-

quency bands should really take into account the effects, if any, of decoder

operations too on the quantization noise spectrum: what the listener hears

is what is decoded and reconstructed. As we see later in Sec. 3.2 the win-

dowing and overlap-add operations at the decoder has a non-trivial effect

on the noise spectrum.

Consider the comparison of window decisions, that is targeted by the two-

layered trellis in Chapter 2. A major difference between the LONG and the

SHORT windows is that the same frequency range is divided into a larger number

of SFBs in the LONG configuration (49 SFBs at 44.1kHz sampling rate) than

in the SHORT configuration (14 SFBs at 44.1kHz sampling rate). Thus the

widths of the SFBs on the Bark scale (henceforth referred to as ‘Bark width’) are

different in the two modes. Hence frame distortion measures such as the ANMR

and MNMR which give equal weights to the NMRs of all SFBs irrespective of their

width fail to yield an effective comparison of the different window configurations.

Further as we shall see in Sec. 3.1, even within the same window configuration,

SFBs are of different Bark widths. Therefore this chapter suggests a Bark scale

correction to the existing NMR distortion measure. If the Bark widths do not

change across bands, the new measure degenerates back to the standard NMR

comparison between bands. The new measure called NMR with Bark Correction

(NMR-BC) is utilized in the TLS of the MPEG VM, and the two-layered trellis

algorithm of Chapter 2. Listening tests indicate that there is a strong preference

for audio encoded in light of NMR-BC than when the usual NMR metric is used,
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and that the right distortion metric is critical to the efficacy of delayed decisions

based R-D optimal audio coding.

In Sec. 3.2 of this chapter we consider the effect of decoder operations on

the distortion. Consider the AAC decoder. The quantized coefficients are re-

constructed, an inverse MDCT applied, and frames overlap added. The overlap

additions results in time-domain noise components from adjacent frames com-

bining, and it is natural to expect that the distortion for a frame as calculated

after the overlap-add operation will be different from prior to it. In [24], this

effect is rightly demonstrated but in an audio encoder based on discrete Fourier

transform (DFT) of 50% overlapped frames (also a perfect reconstruction filter-

bank akin to MDCT). But in the case of MDCT-based coders we can show that

the overlap error components from neighboring frames are orthogonal to the

MDCT basis vectors of the current frame. Thus distortion metrics based solely

on MDCT domain error do not capture overlap-add effects. Note that NMR as

defined by (2.1) of Chapter 2 falls in this category. The error orthogonal to the

MDCT bases can be analyzed using the modified discrete sine transform (MDST).

Such analysis reveals that in addition to the overlap contributions, the orthogo-

nal error has a component from quantization in the current frame itself due to

the non-rectangular window used. In other words, the decoder based window-

ing leads to a spreading of quantization noise from the MDCT domain to the

MDST domain. Since the human ear is sensitive to the magnitude of noise at

any frequency rather than its projections only on cosine or sine bases, a modified

distortion measure is proposed that accounts for the MDST domain error. The

fact that the windows used in these transforms are heavy centered and taper

at the ends leads to the MDST domain error being dominated by the effect of
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decoder based windowing rather than overlap-add. Thus a simplified version of

the distortion metric which accounts only for the window effect is implemented

in the TLS for quantization and coding parameters of the MPEG VM AAC en-

coder. Subjective tests indicate a preference for audio encoded in light of this

modification rather than the usual NMR metric. Experiments are performed us-

ing both window choices, sine and Kaiser Bessel derived (KBD), available in the

AAC standard. The advantages of one over the other with respect to the new

metric are discussed.

3.1 Distortion Modification based on Bark

Bandwidths

3.1.1 Preliminaries

Bark widths of SFBs

Experiments in psychoacoustics have led to the perception of the ‘Critical

Bandwidth’ [72], [88] which leads to a non-linear mapping of the normal frequency

scale. This transformed scaled is known as the Bark scale. The following function

[88] is often used to convert frequency f on the hertz scale to the corresponding

value Zb(f) on the Bark scale.

Zb(f) = 13 arctan(0.00076f) + 3.5 arctan
[(

f

7500

)2]

Bark (3.1)

The idea is that the frequency ranges corresponding to equal widths on the Bark

scale have equal perceptual importance. A frequency band corresponding to 1
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Figure 3.1. SFB widths for different window configurations at 44.1kHz sampling

frequency. The same frequency range is covered by 14 SFBs in the SHORT

configuration and 49 in the other modes.

Bark is known as the ‘Critical Band’ around the center frequency of that band,

i.e., each critical band is 1 Bark wide. The non-linear mapping has the effect

that a critical band corresponds to a smaller frequency band at lower center

frequencies on the Hertz scale than at higher ones.

In AAC, 1024 MDCT coefficients are generated for every LONG, START or

STOP frame. These coefficients, covering the range from 0Hz to half the sampling

frequency, are grouped into SFBs. The lower indexed SFBs have fewer MDCT

coefficients than the higher ones reflecting the non-linear Bark scale. This is

indicated by the bold line in Fig. 3.1a which shows the number of coefficients in

each SFB of a LONG, START or STOP window at a sampling rate of 44.1kHz

(i.e., audio bandwidth of 22.05kHz). Despite this unequal number of coefficients

in each SFB the ‘Bark widths’ of the SFBs are not really the same as is evident

in Fig. 3.1b.

52



On the other hand consider the SHORT configuration. In this case 128 MDCT

coefficients are generated for each SHORT frame and these are grouped into 14

SFBs covering the same 22.05kHz audio bandwidth. The number of coefficients

per SFB and the Bark widths are shown by the dotted lines in Fig. 3.1a and

Fig. 3.1b. It is clear from the figures that there are differences in the Bark

widths of SFBs, both in the same window configuration and between different

configurations.

Noise-to-mask ratio

The NMR, as originally employed in [18], consisted of calculating the differ-

ence (error) between original and coded waveforms frame-wise using an FFT,

computing the error energy in each band of a frame, and dividing by the corre-

sponding masking threshold. A table of widths of these analysis bands at 44.1kHz

and 48kHz sampling frequencies is provided in [18]. The bands, although not ex-

actly 1 Bark wide, were of equal Bark widths. Later encoders such as the MPEG

VM, directly calculate the quantization error in each coding band (SFB) in the

transform (MDCT) domain. The psychoacoustic model provides corresponding

masking thresholds and the NMR is defined as in (2.1) of Chapter 2. But as

noted above not all the SFBs in this case have equal Bark widths.

Ideally, the masking threshold in an SFB determines the maximum amount

of quantization noise in that SFB that is imperceptible to the human auditory

system. But in low bit-rate audio coding invariably the quantization noise exceeds

the masking thresholds in many SFBs, in many frames, and is audible. Since the

NMR is a ratio, examples can be contrived where the noise powers in two SFBs

maybe different but due to proportional masking thresholds, the NMR is the

53



same, thus indicating that the listener would perceive the same distortion (or

noise), which is counter-intuitive.

Experiments with synthetic audio

The following experiment was conducted to test if the same NMR actually

meant that listeners would perceive the same noise level. Consider a pure tone

at frequency fc = 400Hz.

Sample A: Noise with a constant power spectral density (psd) centered at fc,

with width bA = 0.4 Bark and level σ2
A is superimposed with the tone. At 400Hz,

0.4 Bark approximately corresponds to a 40Hz bandwidth

Sample B: Noise with psd centered at fc and with width bB = 0.8 Bark (ap-

proximately 80Hz bandwidth) and level σ2
B is superimposed with the tone.

The integral of the ‘spreading function’ (see [72] for a description) in a region

of 0.8 Bark around the tonal masker is about 1.4 times that in a region of 0.4

Bark, implying that the masking threshold in B is 1.4 times that in A. The same

NMR can be maintained in both cases if the noise powers are in the proportion,

2σ2
B

σ2
A

= 1.4 (3.2)

where the factor of 2 comes from the noise bandwidth difference. The above

scaling was used to have approporiate psd levels. The tone power was higher

than the noise power by about 14dB in A and 12.5dB in B so that noise-masking-

tone (NMT) effects [72] can be neglected and clearly the tone was the masker.

Test subjects were played Samples A and B in random order, and blindly, and

were asked to select one of the following options.

• The two signals have the same noise level.
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• The two signals have different noise levels with an identification of which

had more noise.

86% of the listeners identified the sample corresponding to B as having higher

noise power while 14% opined that there was no difference. No listeners suggested

that A had a higher noise level. This suggests that if noise is unmasked (i.e.,

audible) NMR wrongly indicates the same perceived noise level. The difference

between the above two cases stems from the fact that the noise psd has different

supports and hence the masking thresholds and noise powers were different. Thus

a distortion measure which accounts for differences in Bark widths of SFBs would

be attractive.

3.1.2 Noise-to-mask ratio with bark correction

We suggest here a correction to the NMR measure to explicitly account for

Bark width differences. Specifically, the NMR of each coding band is scaled by

its Bark width. This new measure is referred to as NMR with Bark Correction

(NMR-BC). Following the notation in (2.1), NMR-BC dbc
i for SFB i is given by,

dbc
i = µiei ×

bi Bark

1 Bark
(3.3)

= biµiei

where bi is the Bark width of SFB i. As indicated by (3.3), NMR-BC can be

thought of as apportioning the NMR according to the Bark width.

Note that the experiment in Sec. 3.1.1 is not the only way the same NMR can

be maintained with the perceived noise being different. For example, a louder

version of Sample A would have proportionately scaled noise and masker powers
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and hence same NMR as A. But noise would of course be perceived louder in that

case. More complex measures like the PAQM [9] do account for loudness levels

but are not easy to be used in optimization procedures. Here we have limited

our attention to distortion modification to include Bark width differences.

Experiment with synthetic audio extended

We use the same setting of the experiment in Sec. 3.1.1. In addition to

samples A and B we have,

Sample C: Noise with psd centered at fc, width bC = 0.4 Bark and level σ2
C =

2σ2
A is superimposed with the tone.

C differs from A in only that the noise psd level is higher in C. Thus A and

B have same NMR while B and C have same NMR-BC. Listeners were asked

to identify the two closest in terms of perceived noise level amongst the three

samples. Again tests were blind and random. The listeners additionally had the

option of stating that they were unable to decide. 66% of the listeners opined

that B and C had similar noise loudness, 22% were unable to decide and 12%

chose A and B as similar. None chose A and C as similar. Since B and C had

the same NMR-BC, this test offers an indication that NMR-BC might be a good

measure to use when comparing signals with noise spread across different Bark

widths. More tone plus noise experiments are essential to conclusively state so

but the above experiments inspired the use of this measure for coding real audio

in an AAC setting.
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Incorporation of NMR-BC into the encoder

Both distortion metrics NMR (2.1) and NMR-BC (3.3) are defined per SFB

per frame. Therefore incorporating NMR-BC into the encoder is just a substitu-

tion in place of NMR, in the TLS of MPEG VM (Sec. 2.1), or in the two-layered

trellis approaches of Chapter 2. In the latter case we restrict our experiments

here to the MMNMR trellis of Sec. 2.3.4. When using NMR-BC as the per

band distortion, the corresponding overall distortion metric will be referred to as

MMNMR-BC. We note here that minimizing the MNMR (or MNMR-BC) among

SFBs is very close to what the TLS aims for, i.e., maintaining the same NMR (or

NMR-BC) in each frame. The argument for this is as follows. If all the SFBs do

not have the same distortion, then bits used in SFBs with lesser distortion can

be reallocated to incrementally increase distortion in them while bringing down

that in the SFB with the maximum distortion. This would in effect minimize

the overall maximum distortion or the MNMR. This course eventually leads to

almost the same distortion in each SFB. In Sec. 3.1.3 the MPEG VM encoder

whose TLS employs NMR will be referred to as RM; when it employs NMR-BC

it is referred to as RM-BC. In case of the two-layered trellis approach we refer to

the corresponding codecs as L2-MM, and L2-MM-BC, respectively.

3.1.3 Results

TLS based optimization

The TLS based encoders RM and RM-BC described in Sec. 2.1 were used to

encode audio sampled at 44.1kHz. Both these encoders used transient detection
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based window switching and the bit-reservoir to allocate bits to frames. Five such

coded audio samples (accordion, orchestra, male german speech, glockenspiel and

tenor [89]) were used for testing. Listeners were presented with:

O: the original uncoded sample

A: sample encoded using RM at 48kbps

B: sample encoded using RM-BC at 48kbps

The tests were blind with A and B randomly ordered and the listeners able

to near instantaneously shift between playing the two samples as in MUSHRA

testing [46]. Since both A and B are coded at moderately high bit-rates the

artifacts are expected to be low in either and thus the original was provided to

the listeners to help identify these artifacts. Listeners could select either sample

as the better quality audio or declare them to be equally good. Table. 3.1 shows

the results of these tests. Clearly RM-BC performs considerably better on three

of the five audio samples and somewhat better on the other two.

Audio RM- RM No Pref-
sample BC erence

accordion 66.7% 0% 33.3%
glockenspiel 66.7% 13.3% 20%

german speech 100% 0% 0%
orchestra 40% 33.3% 26.7%

tenor 40% 26.3% 33.3%

Table 3.1. Subjective comparison tests of RM and RM-BC: The figures are the

percentage of listeners who preferred audio encoded using corresponding method.
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Two-layered trellis based optimization

The TLS, window decision and bit-reservoir of the MPEG VM were replaced

by the two-layered trellis approach described previously. The same audio samples

as in the last section were encoded at 20kbps using these two codecs and listening

tests conducted similarly i.e.

O: the original uncoded sample

A: sample encoded using L2-MM at 20kbps

B: sample encoded using L2-MM-BC at 20kbps

A and B in this case being encoded at low bit-rates are either duller or have

artifacts when compared to O. The listeners were asked to give their preference

between A and B. Again the original helped listeners to identify artifacts. The

results of these tests are shown in Table. 3.2. Four out of the five audio samples

were better encoded better by L2-MM-BC while one sample shows only minor

improvement.

Audio L2-MM- L2-MM No Pref-
sample BC erence

accordion 60% 26.7% 13.3%
glockenspiel 80% 6.7% 13.3%

german speech 66.7% 20% 13.3%
orchestra 40% 33.3% 26.7%

tenor 60% 20% 20%

Table 3.2. Subjective comparison tests of L2-MM and L2-MM-BC: The figures

are the percentage of listeners who preferred audio encoded using corresponding

method.
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Comparison of objective metrics

We describe here the gains of the two-layered trellis approach (L2-MM-BC)

when compared to RM-BC in terms of the distortion metric (MMNMR-BC) at

different bit-rates. We also include corresponding single-layered trellis algorithms

(see description in Sec. 2.4) RM-TB(M)-BC, and L1-MM-BC, that respectively

optimize only intra-frame, or only inter-frame decisions. The performance of

these four encoders in terms of the concerned distortion metric is shown in Fig.

3.2. When compared to the TLS based approach each of the single layered trellis

approaches fare better by about 5-8 dB at different bit-rates and the two-layered

trellis approach provides an additional 10dB gain.

Fig. 3.3 shows the window decisions due to transient detection based window

switching (RM), two-layered trellis based approach using the NMR (L2-MM)

measure and when using NMR-BC (L2-MM-BC). L2-MM doesn’t yield a good

comparison between LONG and SHORT windows. It under-estimates the dis-

tortion in SHORT windows and thus heavily favors their presence. But such

distortion is actually audible as disturbing noise in the audio sample. This prob-

lem is rectified by L2-MM-BC thus justifying the motivation for NMR-BC. Note

also that the L2-MM-BC approach decides windows differently from the transient

detection based scheme. Even in places where they seem to match, the switching

decisions are actually off by a frame, which is not visible due to the low resolution

of the graph.
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Figure 3.3. Window decisions due to transient detection (RM) and due to using
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Figure 3.4. MUSHRA tests comparing TLS based and two-layered trellis based

encoders when minimizing NMR-BC: Quality of audio encoded at 16, 24 and

32kbps is shown. Ref is the hidden original and 3.5k is the low pass anchor.

Subjective improvements due to the two-layered trellis

MUSHRA Tests were conducted with 3 audio samples (accordion, orchestra

and glockenspiel) encoded at 16, 24 and 32 kbps using RM-BC and L2-MM-BC.

Each test had a reference original, hidden original and 3.5k low pass anchor. The

aim was to identify the gains provided by the two-layered trellis when compared to

the TLS based approach. Additionally, the experiments indicate the smoothness
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of degradation of quality with bit-rate decrements. The results are shown in

Fig. 3.4. The superior performance of the two-layered trellis approach is evident.

Unlike the RM-BC, the quality for L2-MM-BC degrades rather smoothly. In 2

of the 3 cases, the very good quality of audio coded using L2-MM-BC at 32kbps

led to the hidden original being identified wrongly.

3.2 Distortion Modification to account for

Decoder-end Operations

We now consider the effect of decoder end operations on the perceived distor-

tion in coded audio.

3.2.1 Problem setting

Audio coding methods such as AAC convert overlapped frames of audio to

the frequency domain using a suitable transform which in many cases (including

AAC) is the MDCT [55], [73], [79]. As already described, the transform coef-

ficients are grouped into psychoacoustically relevant partitions, quantized and

entropy coded. The quantization and coding parameters are chosen so that a dis-

tortion measure such as the NMR is minimized subject to a bit-rate constraint.

At the decoder the frame’s quantized coefficients are inverse transformed and

overlap-added with neighboring frames to reconstruct the time domain audio sig-

nal. This is illustrated in Fig. 3.5. Each vector xk denotes a ‘frame shift’ of

audio samples. Frame k, composed of xk and xk+1, is used to obtain the vector

of transform coefficients Xk. This when quantized yields X̂k which is entropy
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coded losslessly and hence received intact at the decoder. The reconstruction x̂k

is obtained by the overlap-add of the inverse transforms zk−1 and zk of X̂k−1 and

X̂k, respectively. Prior to the transformation at the encoder and post inverse

transformation at the decoder, the frames are multiplied by a suitable window

choice to avoid blocking effects. This operation can in fact be embedded in the

transform (and its inverse) as is the case with MDCT (see Sec. 3.2.2) and is

implicit in the corresponding stages of Fig. 3.5.

Reconstructed Signal
after Overlap-Add

Time Domain
Original Signal

Transform Transform

Unquantized
Transform Coefficients

Quantization Quantization
Quantized Coefficients

sent to Decoder

Inverse Transform Inverse Transform

1kx − 1kx + 2kx +kx

kX1kX − 1kX +

1
ˆ

kX −
ˆ

kX 1
ˆ

kX +

Transform Transform

Transform Coefficients
of Reconstructed Signal

1ˆkx − 1ˆkx + 2ˆkx +

1
ˆ D

kX −
ˆ D

kX 1
ˆ D

kX +

ˆkx

1kz −

kz

1kz +

+
+

Inverse
Transformed

Vectors

Figure 3.5. Signal analysis in audio coding. The frequency domain reconstructed

signal is added here to illustrate the discussion.

Note that the reconstructed frame k comprising of x̂k and x̂k+1 has error

contributions due to quantization of not just Xk but also Xk−1 and Xk+1. But

current encoders (including the ones in Chapter 2) calculate distortion for each

frame individually, i.e., using a metric of the form D(Xk, X̂k) which ignores the

effect of any decoder based operation such as overlap-add. Thus it is instructive

to see if analysis (in the frequency domain) of the decoded time domain signal

can capture these effects. To this end, consider applying the same transform
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and framing as in the encoder to the reconstructed time domain signal. The

resulting transform coefficients are shown as X̂
D

k in Fig. 3.5. The same metric

as before could be used to define the “end-to-end” distortion D(Xk, X̂
D

k ). It

will be observed later that in the case of lapped orthogonal transforms (LOTs)

[55], [56], to which class the MDCT belongs, X̂
D

k = X̂k and hence D(Xk, X̂k) =

D(Xk, X̂
D

k ). This is not true for other well known transforms that ensure perfect

reconstruction, including the discrete Fourier transform (DFT). The latter fact

is rightly demonstrated in [24], where the authors using an audio encoder based

on DFT of 50% overlapped frames show that D(Xk, X̂k) 6= D(Xk, X̂
D

k ). In the

discussion to follow we analyze what causes this difference between the MDCT

and DFT coders, and if really, as implied by above arguments, decoder operations

have no effect on the perceived distortion in an MDCT-based coding scheme.

3.2.2 Preliminaries

We introduce here some notation as well as relevant background information

on MDCT with reference to the schematic in Fig. 3.5. Segment xk of the original

signal and corresponding reconstruction x̂k are column vectors of M audio sam-

ples. The kth original and reconstructed frames of length 2M are, respectively,

xk =







xk

xk+1







and x̂k =







x̂k

x̂k+1







(3.4)
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Thus frames are 50% overlapped. MDCT of 2M audio samples yields M coeffi-

cients and the M × 2M forward MDCT matrix is,

P = CH (3.5)

with H =















h(0) 0 · · · 0

0 h(1) · · · 0

...
. . .

...

0 · · · 0 h(2M − 1)















2M×2M

(3.6)

and C =





√

2

M
cos

[
π

M

(

m +
1

2

)(

n +
M + 1

2

)]




M×2M

(3.7)

0≤m≤M−1, 0≤n≤2M−1

m and n in C are row and column indices, respectively. h(n), a window of length

2M , satisfies the constraints

h(2M − 1 − n) = h(n) and h2(n) + h2(n + M) = 1 (3.8)

The inverse MDCT (IMDCT) matrix is P T and obtained by transposition. In-

formation about window prototypes and the use of MDCT in audio coding can

be found in [79]. We alternatively write P as,

P = [PA PB] (3.9)

where PA and PB are M × M sub-matrices. Applying MDCT to the original

signal one obtains

Xk = Pxk = PAxk + PBxk+1 (3.10)

We will also consider MDCT of the reconstructed signal:

X̂
D

k = P x̂k = PAx̂k + PBx̂k+1 (3.11)
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The vector Xk is quantized to X̂k and the quantization error is,

Ek = Xk − X̂k (3.12)

The vectors zk in Fig. 3.5 are obtained by IMDCT,

zk = P T X̂k =







P T
A

P T
B







X̂k (3.13)

Since the MDCT belongs to the class of LOTs it satisfies the following conditions

[55],

PP T = PAP T
A + PBP T

B = I (3.14)

and P







0 I

0 0







P T = 0 (3.15)

⇒ PAP T
B = 0 = PBP T

A (3.16)

where 0 and I are each M × M in dimension. The above conditions enable

perfect reconstruction and time domain aliasing cancellation properties that are

characteristic of LOTs.

The reconstruction segments x̂k and x̂k−1 are formed by overlap-add of cor-

responding IMDCT vectors:

x̂k =
[

0 I

]

zk−1 +
[

I 0

]

zk = P T
B X̂k−1 + P T

A X̂k (3.17)

x̂k+1 =
[

0 I

]

zk +
[

I 0

]

zk+1 = P T
B X̂k + P T

A X̂k+1 (3.18)

where 0 and I are of dimensions M × M . Substituting into (3.11) we obtain

X̂
D

k = PAP T
B X̂k−1 + (PAP T

A + PBP T
B )X̂k + PBP T

A X̂k+1 (3.19)

and by (3.14), (3.16) X̂
D

k = X̂k (3.20)
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which subsequently leads to,

D(X, X̂k) = D(X, X̂
D

k ) (3.21)

Thus a metric such as NMR defined as quantization noise in the MDCT co-

efficients divided by the masking thresholds, is not altered by decoder based

operations such as overlap-add and hence is deficient in its ability to capture

corresponding psychoacoustic effects. The derivation of (3.21) has not explicitly

used the MDCT kernel but the more general LOT properties (3.14) and (3.15).

Hence (3.21) holds true for other LOTs also. Note that, as evidenced by the

system of [24], (3.21) is not valid for all perfect reconstruction systems employing

overlapped transforms.

3.2.3 Distortion in the MDCT and MDST domains

We now analyze the time domain error in a reconstructed frame. From (3.5),

taking the MDCT of frame xk implies applying the cosine based transform C

to the ‘windowed’ frame Hxk. The time domain reconstruction error in the kth

frame is xk − x̂k. The ‘windowed’ error is

ek = H [xk − x̂k] = H







xk − x̂k

xk+1 − x̂k+1







(3.22)

By the perfect reconstruction property, absent quantization, IMDCT followed by

overlap-add yields back the original samples:

xk = P T
B Xk−1 + P T

A Xk (3.23)

xk+1 = P T
B Xk + P T

A Xk+1 (3.24)
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Substituting (3.17), (3.18) and the above in (3.22) and using (3.12) we have,

ek = H







P T
B Ek−1 + P T

A Ek

P T
B Ek + P T

A Ek+1







(3.25)

(3.5) ⇒ Cek = P







P T
B Ek−1 + P T

A Ek

P T
B Ek + P T

A Ek+1







(3.26)

(3.9), (3.14), (3.16) ⇒ Cek = 0Ek−1 + IEk + 0Ek+1 (3.27)

This indicates that the cosine basis vectors (rows of C) are orthogonal to error

components in ek that result from the overlap of x̂k with neighboring frames.

On the other hand these components can be captured using a basis set that is

orthogonal to the row space of C. The sine transform S given by

S =





√

2

M
sin

[
π

M

(

m +
1

2

)(

n +
M + 1

2

)]




M×2M

(3.28)

is one possible orthogonal basis set, i.e., SCT = 0. Note that both C and S are

of rank M and together form a ‘complete basis’ for the 2M dimensional space.

By straightforward manipulations, it can be shown that

CT C + ST S = 2I (3.29)

⇒ eT
k ek =

1

2

[

(Cek)
T (Cek) + (Sek)

T (Sek)
]

(3.30)

Thus the time domain error in a windowed frame can be completely analyzed

using both cosine and sine transforms. Define Ek = Sek. By (3.25) ,

Ek = SH







P T
B

0







Ek−1 + SH







P T
A

P T
B







Ek + SH







0

P T
A







Ek+1 (3.31)

= PS







P T
B

0







Ek−1 + PSP T Ek + PS







0

P T
A







Ek+1 (3.32)
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where paralleling the treatment of MDCT we define the MDST matrix as

PS = SH (3.33)

The error Ek will be referred to as the MDST domain error, as it is the MDST of

the actual (not windowed) time domain error xk−x̂k. Note that despite SCT = 0,

PSP T = SH2CT 6= 0 (3.34)

for windows not satisfying H2 = I. A rigorous proof of the prior statement is left

out for conciseness. It can specifically be verified for the sine and KBD windows

specified by the AAC standard [43]. Thus, by (3.32), in addition to quantization

error contributions from neighboring frames, part of the MDST domain error

for a frame, i.e., PSP TEk results from quantizing the MDCT coefficients of the

concerned frame itself. In other words, the non-rectangular window used in these

transforms results in ‘spreading’ the MDCT quantization error into the MDST

domain.

As mentioned previously the metric of choice in the AAC encoder is the NMR

(2.1), which can be defined in more detail for SFB i of frame k as

NMRk,i = µk,i

∑

j∈SFB i

E2
k(j) (3.35)

Here Ek(j) is the jth element of Ek and µk,i is the reciprocal of the masking

threshold for the ith SFB of frame k, provided by a psychoacoustic model. It

is well known that the human ear is sensitive to the spectral magnitude rather

than any one individual orthogonal component (sine or cosine). Thus a distortion

metric that accounts for the magnitude of error in different frequency bins, rather

than its projection only in the MDCT domain, yields a better comparison of

the effects of quantization in different coding bands. Therefore we propose an
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enhanced distortion measure, NMR+, which, in addition to the MDCT error,

accounts for the error Ek (3.32) present in the MDST domain. Specifically,

NMR+
k,i = µ′

k,i

∑

j∈SFB i

[E2
k(j) + E2

k(j)] (3.36)

It follows from (3.32) that NMR+ depends on the MDCT errors of neighboring

frames and hence cannot be incorporated into an encoder that analyzes each

frame separately, e.g., the MPEG VM. Note that the masking thresholds em-

ployed in (3.35) and (3.36) are not the same. Usually the psychoacoustic model

performs an FFT of the windowed frame and finds thresholds in different bands.

The FFT thresholds are eventually scaled to reflect the energy in the MDCT do-

main. In the case of (3.36) this threshold should additionally account for MDST

domain energy.

As suggested by (3.34), the error Ek propogates to the MDST domain through

H2 (or h2(n)) which is plotted in Fig. 3.6 for sine and KBD windows. The KBD

window provides reduced overlap. Under the assumption that all M elements of

Ek−1, Ek and Ek+1 are independent random variables with equal variance, (3.32)

can be used to calculate the variance of elements in Ek (the MDST domain error)

for any specific window choice. The MDST domain error turns out to have the

same variance as Ek suggesting that the orthogonal domain error is as important

to account for as the MDCT domain error. In case of the sine window the errors

Ek−1 and Ek+1 can be shown to contribute 25% each to the MDST domain error

of the kth frame while the remaining 50% is due to Ek. For the KBD window

only 15% of the MDST domain error is due to each of the neighboring frames and

70% due to MDCT quantization in the current frame. Therefore we approximate
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Ek by Êk = PSP T Ek and NMR+ by,

NMR+
k,i ≈

∑

j∈SFB i [E
2
k(j) + Ê2

k(j)]

T ′
i

(3.37)

This simplified NMR+ accounts for most of eT
k ek in (3.30), especially in the case

of the KBD window.
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Figure 3.6. Comparison of the squares of sine and KBD windows. The KBD

window results in reduced overlap error due to faster tapering.

Since this approximate NMR+ depends only on the MDCT error in the current

frame itself, it can be incorporated in an encoder such as the MPEG VM by simple

substitution of the usual NMR. Whenever the SF (and hence the MDCT error

Ek) for an SFB is altered, Êk = PSP T Ek is re-computed and the NMR+ value

updated.

Multiplication with the M×M matrix PSP T is performed efficiently by recog-

nizing the fact that, for good window choices such as sine and KBD, this matrix

has its most dominant elements close to the principal diagonal. This band-like

structure of PSP T is the result of critically located spectral zeroes in the case

of the sine window and very good anti-aliasing (side lobe reduction) properties

72



in the case of KBD. Therefore for any j, Êk(j) is constructed from elements of

Ek with indices in a very small neighborhood of j. When the sine window is

used it can be shown that Êk(j) depends exactly on Ek(j + 1) and Ek(j − 1).

In case of the KBD window 4 to 6 Ek coefficients are sufficient to calculate each

Êk(j). Thus the M multiplications (and additions) to calculate each Êk(j) can be

reduced to a modest number. Efficient computation of MDST coefficients from

MDCT coefficients has been used previously, for example in [21] to estimate the

power spectrum of the frame. Since the sine and cosine bases in PS and P are

uniformly spaced in frequency, most of the rows of PSP T (except a few at the top

and bottom ends) are shifted repetitions of each other enabling efficient storage

of the matrix.

3.2.4 Experiments

In experiments we have employed the MPEG VM. The (approximate) modi-

fied metric NMR+ can be used in lieu of the NMR in the inner loop of the TLS

in the MPEG VM. The two implementations are respectively termed VM-NMR

and VM-NMR+. The encoders were constrained to work only in the ‘LONG’

window mode of AAC (i.e., M was fixed at 1024). 5 audio files each at sampling

rate 44.1kHz were encoded at a bit-rate of 48kbps by both methods and with

both window choices, sine and KBD. Blind listening tests in the A-B style were

conducted with 15 subjects, with access to the original audio file and randomly

ordered samples encoded by the two methods when using the same window. They

could switch near instantaneously between any of these 3 files. Since the choice

of bit-rate is relatively high, the original helps listeners to identify artifacts in

either coded sample. They could pick one as preferred or state that they were
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unable to decide. The results of the tests are given in Table 3.3. Considerable

subjective gains of using the new measure are seen with either window choice.

Only in the case of the accordion piece there was no clear preference.

Audio sine KBD
Sample VM- VM- No VM- VM- No

NMR+ NMR Pref NMR+ NMR Pref
Harpsichord 58.33 0 41.66 75 0 25

Organ 50 0 50 66.67 0 33.33
Accordion 25 25 50 41.67 33.33 25

Male German speech 91.67 8.33 0 100 0 0
Female English speech 91.67 8.33 0 91.67 8.33 0

Table 3.3. Subjective comparison tests of VM-NMR and VM-NMR+ with both

sine and KBD windows: figures indicate the percentage of listeners who preferred

audio encoded using corresponding method.

We note that we are yet to employ the NMR+ in our two-layered trellis. This

entails certain difficulties as the distortion in a band now depends on neighboring

bands also, due to the MDST domain spreading, and the inner trellis algorithm

needs modifications to account for this spreading.

3.2.5 Generalization to other LOT based codecs

We consider here audio coding with generic LOT matrices of dimensions M ×

2M . Additionally, let us suppose the forward LOT matrix P of dimensions

M × 2M is decomposable into the form C ′H as in (3.5), with the rows of C ′

being orthogonal basis vectors spanning an M dimensional sub-space of the 2M

dimensional space. Using a matrix S ′ with rows as orthogonal basis vectors of the

complementary M dimensional sub-space, similar to the definition of the MDST,
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we could now define corresponding PS and hence proceed to a time domain error

analysis similar to (3.32). Thus the use of a distortion measure similar to NMR+

is conceivable even in such generic encoders, although perceptual considerations

may need to be revisited in light of the actual choice of transform.

3.3 Conclusion

Two modifications to the widely accepted NMR audio distortion measure have

been proposed in this chapter.

One stems from the need to better compare distortion between coding bands

of different widths on the Bark scale, and involves scaling the usual NMR in each

SFB by an appropriate scaling factor based on the Bark width of the SFB. This in

turn leads to a better comparison between different window choices, which were a

focus of the optimization by delayed decisions described in Chapter 2. Synthetic

experiments support the choice of this correction factor to NMR. When the im-

proved distortion measure (NMR-BC) is used in place of NMR in the MPEG

verification model, or in the MMNMR minimizing two-layered trellis approach of

Chapter 2 a preference is indicated for audio encoded in light of the new measure.

The new measure seems to bring out a better comparison between window choices

and thus avoid artifacts notably due to superfluous SHORT window selection.

The second modification stems from the fact that distortion metrics for audio

coding based solely in the MDCT domain of a frame are invariant to necessary

windowing and overlap-add operations at the decoder. An analysis of the time

domain error of a frame reveals that the corresponding error components are

orthogonal to the MDCT basis vectors. An enhanced distortion measure NMR+
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is suggested that incorporates these components via MDST domain analysis.

Subjective tests, using a simplified version of this metric accounting only for the

windowing effects, evidence a preference for audio encoded by employing this

modification. The improved metric captures the magnitude of the frequency

domain error rather than its projection onto the cosine basis vectors of MDCT.
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Chapter 4

Delayed Decoding of Predictively

Encoded Sources

In Chapter 2 we considered the application of encoding delay to optimize

decisions in an audio encoder. Chapter 3 extrapolated on this research and

proposed modifications to the audio distortion metric itself, so that the encoding

decisions are optimal even in a subjective sense. We now shift gears and focus

on the decoder end of the compression chain. We consider the application of

delay at the decoder, to collect coded information about future frames/samples,

and exploit correlations (if any) of the current frame with such information, to

optimize its reconstruction. Since the existence of such correlations is a pre-

requisite to apply this technique, the AAC setting of Chapter 2, where such

correlation between frames is almost depleted by the use of transform coding,

is not appropriate. Hence we consider here the scenario of predictive coding

systems, where a correlation model is explicitly assumed. We thus propose in
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this chapter optimal delayed decoders for predictively encoded sources.

Predictive coding is widely employed for various signal compression applica-

tions including the H.264 standard for motion compensated video coding [85], the

G.726 standard for speech coding via adaptive differential pulse code modulation

(ADPCM) [47], continuously variable slope delta modulation used in the hands-

free profile of Bluetooth devices [1], etc. When applied to a sequence of correlated

signal samples, redundancy in the current sample is removed by predicting it from

past coded samples, and encoding only the innovation, or prediction residual. For

simplicity we use “temporal” terminology, but the proposed ideas are equally ap-

plicable to spatial or other types of correlation. The development of predictive

coding schemes frequently assumes an AR model of the source [6], [12], [20], [25],

[27], [37], [38], [40], [41], [77]. Consider, for now, a first-order AR (or Markov)

model. The source consists of a zero-mean stationary sequence {xn} of real-valued

random variables with,

xn = ρxn−1 + zn . (4.1)

The random variables {zn} are independent and identically distributed (i.i.d),

with pdf pZ(z), and are referred to as the innovations of the process. The cor-

relation coefficient of adjacent samples is ρ. We consider predictive coding of

this source using a DPCM scheme [27], [32], [37], [38], [41]. For example, motion

compensated video coding effectively performs inter-frame (temporal) prediction

of spatial transform coefficients, and can be modeled as DPCM. The DPCM en-

coder generates a prediction x̃n, based on prior reconstructions, and subtracts it

from the current sample xn to generate the prediction error en, which is quan-

tized using a scalar quantizer Q. This quantizer is specified by the mappings

fQ(x) : R → I, and gQ(x) : I → R, where R is the real line, and I, a countable
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index set. The quantization index in = fQ(en) is entropy coded and sent to the

decoder, which generates x̂n = x̃n + gQ(in). At high rate, x̂n−1 ≈ xn−1, and the

prediction

x̃n = ρx̂n−1 (4.2)

is optimal. Even at low bit-rates this form of the predictor is commonly employed.

In an AR source model (such as (4.1)), the present sample xn is not only

correlated with the past, but also with the future, i.e., with {xl}l>n. At high

rate, the prediction error en ≈ zn ∀n and hence the indices {in} are approximately

i.i.d. In this case future indices {il}l>n provide no additional information on xn.

In practice, bit-rates are limited and such approximations do not hold, in which

case these future indices do contain information on xn, which could potentially

be exploited at the decoder to improve reconstruction. Obviously, this entails

decoding delay. Prior research that exploits this fact includes the interpolative

DPCM (IDPCM) [77], and smoothed DPCM (SDPCM) [20] approaches, both of

which smooth (i.e., filter) the regular DPCM outputs {x̂n} with a suitable non-

causal post-processor to generate refined estimates. The basic paradigm of these

schemes is summarized in Fig. 4.1a. While more details are provided in Sec. 4.1,

suffice it to say that the design of the post-processor in either scheme is heuristic

and depends on assumptions, for instance about the quantizer resolution, which

preclude performance guarantees relative to regular (zero-delay) DPCM. A more

significant shortcoming is that by merely filtering {x̂n} (see Fig. 4.1a), while

disregarding the indices {in}, as well as knowledge about the exact function of

modules such as the quantizer and predictor, these methods under-utilize the

information available at the decoder. The following simple argument illustrates

this suboptimality: The decoder knows (x̃n, in,Q) that determine the effective
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quantization interval In = {x ∈ R : fQ(x − x̃n) = in} in which xn must lie, but

simple smoothing of {x̂n} may produce a reconstruction that lies outside In.

In contradistinction, we propose an ET approach to delayed decoding that

optimally combines all the information (i.e., indices {il}l≤n+L or equivalently the

intervals {Il}l≤n+L) available at the decoder, for a given delay (or ‘look-ahead’) L,

in a recursively calculated conditional pdf, to guarantee the best reconstruction

of the current sample xn. Fig. 4.1b contrasts the proposed scheme with prior

work. Although derived in the framework of first order AR sources, the proposed

technique is easily generalized to higher order processes. While the applicability

of this optimal delayed decoder is not limited to any particular form of the pre-

dictor, in case of the commonly employed ‘matched’ predictor (e.g., (4.2) for the

source in (4.1)) it motivates an approximate decoder whose reconstruction is of

the form x̃n + c({il}n−L′≤l≤n+L), and is implementable as a time-invariant code-

book over the ‘window’ of indices {il}n−L′≤l≤n+L, which has the obvious benefit

of low-complexity decoding even compared to linear smoothing. This codebook

approach is asymptotically (in the memory L′) optimal, and in the case of first

order AR processes, is observed in experiments to provide near-optimal perfor-

mance even with L′ = 0. Simulation results demonstrate that both (the optimal

and codebook) methods substantially outperform IDPCM and SDPCM. The in-

creased storage necessitated by the delayed decoding codebook is considerably

mitigated by selective merging of codebook entries, that conditionally maps dif-

ferent index values to the same reconstruction. The codebook approach naturally

paves the way to a training-set based design, that is particularly attractive in the

case of higher order processes, where the recursive evaluation of conditional pdfs

(employed in the optimal method) becomes overly complex due to high dimen-
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(a) IDPCM [77] or SDPCM [20] (b) Proposed optimal delayed decoder

Figure 4.1. Prior approaches merely smooth the regular DPCM reconstructions;

the Optimal Delayed Decoder exploits all available information

sion. Corresponding results with second and third order processes demonstrate

the efficacy of this approach.

Preliminary results of this work have been reported in [64] and in more detail

in [59]. We note that the ET approach in [75] to (zero-delay) scalable predic-

tive coding, that efficiently uses base-layer quantization interval information for

improved enhancement layer prediction, was an early inspiration for the current

work. Related prior research includes [41] that derives asymptotic bounds on

delayed decoding gains for a first order gaussian AR process, assuming that the

quantization noise is white, gaussian, and uncorrelated with the source, and [54]

that provides an information theoretic analysis under the same setting. An op-

timal delta modulation (zero-delay) system that recursively estimated the pdf

of the current sample conditioned on past outputs has been described in [25],

while an iterative optimization of a delta modulator, where the prediction is con-

ditioned on a finite set of past indices, has been proposed in [12]. The general

framework in [32] for alphabet constrained compression, that extends earlier work

by Fine [29], subsumes delayed decoding as a special case, although no practical

design algorithm was proposed. Specific to a gaussian AR source, and under cer-

tain assumptions about quantization effects, improved DPCM performance was

demonstrated in [37] by modifying the encoder to include a rate-distortion opti-
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mized non-causal pre-filter, and a corresponding modified predictor. Extension

to include a decoder post-filter was presented in [38], although it is noted that

most of the gains are due to the encoder side pre-filtering. We emphasize that

the focus here is on a zero-delay encoder, with latency allowed at the decoder.

Finally we note that predictive coding is particularly attractive for applica-

tions where the framing delay or complexity of competing transform-based ap-

proaches are undesirable/unacceptable: for instance, low-delay audio coding [76],

audio/speech compression for bluetooth headsets [1], low power image sensors

[53], etc. The delayed decoding approaches presented here employ a delay of

a few samples (3-4), as opposed to an entire frame, and are thus attractive for

these low latency scenarios. In applications such as the image sensor, although

the encoder may be simple, the decoder may be endowed with considerable com-

putational capabilities, which can be well exploited by delayed decoding.

The rest of this chapter is organized as follows. Sec. 4.1 describes the prior

work [20] and [77] in more detail. The optimal delayed decoder is derived in Sec.

4.2, followed by its low complexity approximation, the codebook method in Sec.

4.3. Results for first order sources, a method for codebook size reduction, and

generalizations to higher order processes are provided in Sec. 4.4, Sec. 4.5, and

Sec. 4.6 respectively. Finally Sec. 4.7 describes an example encoder modification

that employs for prediction, reconstructions of past samples obtained via the

proposed delayed decoder.
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4.1 Preliminaries

IDPCM [77] and SDPCM [20] adopt a smoothing approach to exploit future

information at the decoder. Either approach designs a non-causal filter, and

applies it to the “regular”, zero-delay, DPCM reconstructions. We briefly describe

here the design of this non-causal filter by both approaches, and highlight its

limitations.

4.1.1 Interpolative DPCM

IDPCM [77] determines the set of coefficients bl, −L′ ≤ l ≤ L, l 6= 0, that

minimize E[(xn −
L∑

l=−L′,l 6=0
blxn+l)

2], to obtain the smoothed estimate of xn:

x̂idpcm
n =

−1∑

l=−L′

blx̂
idpcm
n+l +

L∑

l=1

blx̂n+l (4.3)

where x̂n denotes the regular DPCM reconstruction. Note that (4.3) implies

smoothing of x̂n using the non-causal IIR filter specified by the coefficients bl.

It is shown in [77] that bl are determined by the auto-correlation matrix, irre-

spective of the bit-rate, or process distributions. Specifically for the first order

process (4.1), b−1 = b1 = ρ

1+ρ2 , and for l /∈ {−1, 1}, bl = 0, i.e., the look-ahead L

is automatically restricted to 1. In general, the maximum possible look-ahead L

in IDPCM (and look-back L′) is restricted to the process order, although as will

become evident in Sec. 4.4 the potential gains in looking further ahead can be

substantial. Similar to examples in [77], henceforth in this chapter we assume L′

of the IDPCM smoother is fixed to its maximum value, i.e., the process order.

IDPCM as described here is purely a decoder enhancement. A second method

(applicable to processes with order greater than 1), that modifies the encoder to
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introduce the smoothed IDPCM reconstructions back into the prediction loop, is

also proposed in [77]. More on this in Sec. 4.7.

4.1.2 Smoothed DPCM

In SDPCM [20] a Kalman filtering-based fixed-lag smoother [66] is used. The

AR process provides the ‘plant’ model which, in case of the first order AR process

(4.1) and for a fixed-lag (i.e., look-ahead) L, is:
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The above is easily generalized to higher order processes. The quantization pro-

cess provides the ‘observation’ model:

x̂n =
[

1 0 · · · 0

]

xn + wn, (4.5)

where wn is the DPCM quantization noise, assumed to be white. Kalman filtering

is now used to obtain the best estimate x̂(n|n) of xn, given observations up to

time n, and the smoothed estimate

x̂sdpcm
n =

[

0 · · · 0 1

]

x̂(n + L|n + L) (4.6)

Note that invariably wn is correlated with xn, especially at low bit-rates, and since

{xn} itself is a temporally correlated sequence, the assumption that quantization

errors {wn} are white is invalid. Although the Kalman filter is generally adaptive,

for the time-invariant model given by (4.4) and (4.5), it can be shown that it has

84



a ‘steady state’ [66] when |ρ| < 1, implying a time-invariant smoother. This is in

general the case when the driving process is stationary, and the quantizer does

not change with time. SDPCM, like IDPCM, ignores the process distribution.

But unlike IDPCM, it does incorporate knowledge of the bit-rate through the

observation (or quantization) noise variance employed in the Kalman recursion

[66].

As illustrated by the simple argument in the introductory part of this chapter,

both SDPCM and IDPCM, by merely smoothing the regular DPCM reconstruc-

tions, disregard a substantial amount of information available to the decoder in

the form of quantization indices {in}, which is efficiently utilized by the proposed

optimal delayed decoder discussed in the following section.

4.2 Optimal Delayed Decoder

In this section we formulate the optimal delayed decoder for the first order

AR source (4.1) encoded via DPCM. Extension to higher order processes is dis-

cussed in Sec. 4.6. While the general derivation assumes no particular form of

the predictor, a computationally efficient simplification is also presented for the

special case when the predictor is matched to the source.

4.2.1 Arbitrary predictor: the general case

Henceforth, with respect to any sequence {an}, the notation {al}
k
m, {al}m, and

{al}
k denote, respectively, the truncated sequences {al : m ≤ l ≤ k}, {al : l ≥ m},

and {al : l ≤ k}. We do not alter the DPCM encoder in any way. Thus, the in-
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dices {il}
n known at the decoder, determine the effective quantization intervals

{Il}
n exactly, {il}

n ⇔ {Il}
n. Let mean squared error (MSE) be the distortion

criterion. Then the optimal estimate x̂∗
n, for a fixed look-ahead L, is given by

x̂∗
n = E[xn|{il}

n+L] = E[xn|{Il}
n+L] , (4.7)

where expectation is over the pdf p(xn|{Il}
n+L) conditioned on all information

available at the decoder. Thus, x̂∗
n can be obtained if this density is known.

We use the streamlined notation p(·) to denote any pdf or probability, and

add a subscript whenever the interpretation is not evident from the arguments.

Note that the above conditional pdf automatically limits the optimal estimate to

the interval In. We now write

p(xn|{Il}
n+L) =

p(xn|{Il}
n)p({Il}

n+L
n+1 |xn)

∫

p(xn|{Il}n)p({Il}
n+L
n+1 |xn)dxn

. (4.8)

Unless otherwise indicated, integrals are over R. The above equality follows from

Bayes’ rule, and the Markov property of the process (4.1): given xn, the probabil-

ity of events {Il}
n+L
n+1 , is independent of any other information from the past (i.e.,

{Il}
n). Note that p(xn|{Il}

n) is the pdf of xn conditioned on all information up

to the current instant n. An optimal zero-delay decoder estimates xn simply as

the mean of this pdf (henceforth referred to as the zero-delay pdf ). The optimal

delayed decoder weighs the zero-delay pdf with p({Il}
n+L
n+1 |xn) representing the

conditional probability, given xn, of the known future outcomes. Hence the com-

posite pdf p(xn|{Il}
n+L) of (4.8) incorporates all known information up to the

fixed delay L. The estimate of xn is then x̂∗
n of (4.7). We next provide recursion

formulas to calculate p(xn|{Il}
n) and p({Il}

n+L
n+1 |xn).

The zero-delay pdf at time n − 1, denoted p(xn−1|{Il}
n−1), subsumes in it all

information received at the decoder up to that time. The zero-delay pdf at time
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n, or p(xn|{Il}
n), is recursively obtained as follows. The first step is to find the

pdf of xn conditioned on information available up to time n − 1:

p(xn|{Il}
n−1) =

∫

p(xn−1, xn|{Il}
n−1)dxn−1

=
∫

p(xn−1|{Il}
n−1)p(xn|xn−1)dxn−1

=
∫

p(xn−1|{Il}
n−1)pZ(xn − ρxn−1)dxn−1 (4.9)

The second equality is due to the Markov property of the process (4.1). Employ-

ing the fact that zn is independent of xn−1 and using (4.1) yields (4.9). Now, at

time n, the index in becomes available, that provides the additional information

that xn lies in the interval In. This information is absorbed into the above pdf

via appropriate conditioning to obtain:

p(xn|{Il}
n) =







p(xn|{Il}
n−1)∫

In
p(xn|{Il}n−1)dxn

xn ∈ In

0 else

(4.10)

A close inspection of (4.9) shows that it is in effect a convolution. In practice,

discretized versions of the densities are used, with this convolution efficiently im-

plemented using an FFT, combined with an interpolation/re-sampling operation

between updates, for the required axial scaling. This recursive update of the

zero-delay pdf is similar to the recursion employed in [25] to obtain the optimal

binary quantizer in a delta modulator.

Next, the probability of future events is derived via the backward recursion

enumerated below. Say, at time n + 1 we have the probability p({Il}n+2|xn+1)

of all future outcomes given xn+1. The following recursive update provides the
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corresponding probability, p({Il}n+1|xn), at time n.

p({Il}n+1|xn) =
∫

In+1

p({Il}n+2, xn+1|xn)dxn+1

=
∫

In+1

p({Il}n+2|xn+1, xn)p(xn+1|xn)dxn+1

=
∫

In+1

p({Il}n+2|xn+1)pZ(xn+1 − ρxn)dxn+1. (4.11)

In other words, the above recursion is a ‘one sample retreat’ procedure: each

use of this procedure implies a step backwards in time (n + 1 to n), which thus

appends a new event (In+1) to the existing list of future events ({Il}n+2), and by

(4.11) accommodates it appropriately into the probability calculation. But for a

given look-ahead L, the future information available to reconstruct xn is limited to

{Il}
n+L
n+1 . The only knowledge about samples xl, l > n + L, is that they are on the

real line. Hence, effectively Il = R, l > n + L (obviously with probability one).

Thus we initialize p({Il}n+L+1|xn+L) = 1 and employ (4.11) L times to ‘retreat’

from time n+L to n, and obtain the probability p({Il}n+1|xn) = p({Il}
n+L
n+1 |xn) of

the known future outcomes given xn. Application of a suitable indicator function

converts (4.11) to a convolution, which is then efficiently implemented via FFT.

The optimal delayed decoder, for a look-ahead L, is thus:

Optimal Delayed Decoder

At time n + L

1. Decode (as in regular DPCM) index in+L, and use x̃n+L to obtain x̂n+L,

and the interval In+L.

2. Update pdf p(xn−1|{Il}
n−1) to p(xn|{Il}

n), that combines all information

available up to time n.

88



3. Obtain probability p({Il}
n+L
n+1 |xn) as a function in xn, that combines infor-

mation about all available future outcomes (relative to time n).

4. Use (4.7) and (4.8) to obtain the optimal estimate x̂∗
n.

Note that p(xn|{Il}
n) needs to be suitably initialized, say at n = 0. If |ρ| < 1,

the effect of this initialization decays with time.

4.2.2 The matched predictor: a special case

While Step 2 of the optimal delayed decoder is a one step update (n − 1 to

n), Step 3 is an L step recursion (n + L to n), that is repeated every instant

n. The latter could entail considerable computation for large look-aheads. For

the special case of the matched predictor (4.2), and with respect to the assumed

time invariant DPCM scheme, a simplification can be effected. With look-ahead

L = 1, the substitution xn+1 = e + x̃n+1 in (4.11) (where x̃n+1 is given by (4.2))

yields

p(In+1|xn) =
∫

IQ(in+1)
1 · pZ(e − ρ(xn − x̂n))de . (4.12)

Here IQ(i) = {x ∈ R : fQ(x) = i} are time-invariant intervals characteristic of

the quantizer. Define the function Λ(x, i) : R × I → R as:

Λ(x, i) =
∫

IQ(i)
pZ(e − ρx)de . (4.13)

Note that the function Λ(x, i) is time invariant, and completely determined by the

quantizer, and innovation pdf. Hence, p(In+1|xn) is the above function evaluated

at (xn − x̂n, in+1). We now make the following claim:

Claim 1 : In case of the matched predictor (4.2), a time invariant quantizer Q,
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and the stationary process (4.1), p({Il}
n+L
n+1 |xn) can be obtained by evaluation of

a time invariant function of the form Λ(x, {il}
L−1
0 ), at (xn − x̂n, {il}

n+L
n+1 ), ∀L > 0.

Proof sketch: Already shown for L = 1. Complete by induction on L.

Thus the L-step recursion in Step 3 of the optimal delayed decoder can

equivalently be simplified by constructing a codebook containing the functions

Λ(x, {il}
L−1
0 ), i.e., each element of the codebook is a function (of a fixed shape

along the real line) indexed by {il}
L−1
0 . Once the indices {il}

n+L
n+1 are collected,

the corresponding function Λ(x, {il}
n+L
n+1 ) is read, and shifted by x̂n, to obtain

p({Il}
n+L
n+1 |xn).

4.3 Codebook-based Delayed Decoder

Although the optimal estimate (4.7) is conditioned on all known information,

{il}
n+L, the optimal delayed decoder of Sec. 4.2 needed, at each instant n, the

exact knowledge of indices {il}
n+L
n only: information about the past is embedded

in the zero-delay pdf, and the prediction x̃n, which are updated every instant.

Hypothetically, as an alternative to these recursive calculations, one could envi-

sion a time-invariant codebook-based decoder that continuously collects indices,

maps index sequences to reconstructions given by (4.7) stored in a look-up table,

and simply reads out the optimal estimate. While such an approach would con-

siderably simplify the computational requirements of optimal delayed decoding,

the growing length of the sequence {il}
n+L and associated growth in memory

requirements render strict optimality infeasible. With fixed storage constraints,

only a finite window of indices {il}
n+L
n−L′ is available every instant. However, the

decoder still has access to x̃n which, by virtue of the prediction loop, is usually a
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function of all past indices {il}
n−1, and hence contains some additional informa-

tion that is not present in the window of indices {il}
n+L
n−L′. The optimal estimate

with finite index memory is thus:

x̂∗
n(L′) = E[xn|x̃n, {il}

n+L
n−L′] . (4.14)

Note that x̃n is a real number and not an index, and a look-up table whose en-

tries implement (4.14) cannot be constructed. However, AR processes do not

contain periodic components, and inter-sample correlation generally decreases

with increasing separation (|ρ| < 1 ensures this for (4.1)). Predictors are either

closely matched to the source or at least correspond to a stable system, and

thus the current sample’s prediction is influenced only minimally by indices that

occurred much earlier in the sequence (easily verified for the matched predic-

tor (4.2)). These two factors imply that, in practice, a long window of indices

{il}
n+L
n−L′ should subsume within it almost all the information in x̃n and suffice to

approximate (4.14) closely 1. Therefore, the following approximate estimate of

xn can be stored in a codebook:

x̂∗
n(L′) ≈ E[xn|{il}

n+L
n−L′] . (4.15)

Stationarity of the process ensures time invariance of the codebook. A caveat is

that, depending on the degree of correlation, a good approximation may require

large L′, and hence a gigantic codebook (whose size grows as KL′

, where K is

the number of cells in the quantizer). Bello et al. [12] employ such a codebook

in their design of a zero-delay (L = 0) delta modulation system. However, for

1Although, absent quantization, temporally decreasing correlation implies xn is nearly in-
dependent of xn−m, m ≫ 0, when quantization is present the interval In in which xn lies,
and the index in, are influenced by the prediction x̃n, and through it linked to past events. So
stability of the prediction loop is also a requirement to ensure that the inherent system memory
is limited.
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the case of the matched predictor, the insight provided by the optimal delayed

decoder of Sec. 4.2 enables a very good approximation that converts (4.14) to a

look-up table-based estimate without recourse to a large L′.

Specifically, we show that in case of the matched predictor, the optimal esti-

mate in (4.7) is of the form

x̂∗
n = x̃n + c′

(

pEn−L′ (e|{il}
n−L′−1), {il}

n+L
n−L′

)

(4.16)

where pEn−L′ (e|{il}
n−L′−1) is the pdf of the prediction error at time n−L′ condi-

tioned on the indices {il}
n−L′−1 (i.e., all past information relative to time n−L′).

While the proof of the above equation is deferred to the Appendix A.1, its im-

port is the following: given the density pEn−L′ (e|{il}
n−L′−1), any other effect of

the indices {il}
n−L′−1 on the optimal estimate is completely subsumed in x̃n;

the value of c′(·) is then solely determined by the values of the remaining indices

{il}
n+L
n−L′. Thus, if the prediction error pdf pEn−L′ (e|{il}

n−L′−1) is approximated by

a time-invariant density (for instance by assuming that it is simply pZ(e), which

it indeed asymptotically approaches at high bit-rates), then the term c′(·) is sim-

ply a time-invariant term of the form c({il}
L+L′

0 ), i.e., its values can be stored

in a codebook indexed by {il}
L+L′

0 . Thus, the optimal finite memory estimate in

(4.14) can be approximated as:

x̂∗
n(L′) ≈ x̃n + c({il}

n+L
n−L′) . (4.17)

At every instant n the indices {il}
n+L
n−L′ are collected, the term c({il}

n+L
n−L′) read

from the codebook, and added to x̃n.

To understand (4.16) better, consider the optimal delayed decoder of Sec.

4.2. At every instant n information from the past is incorporated into the opti-

mal estimate in two different ways: (a) via the pdf p(xn|{Il}
n−1) in (4.9), and
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(b) via the intervals {Il}
n+L
n in (4.10) or (4.11) whose limits depend not just on

the indices {il}
n+L
n , but also on the prediction x̃n (and hence on past indices).

Since our focus in this section is a codebook-based approximation in lieu of re-

cursive pdf calculations, let us say we simply approximate p(xn|{Il}
n−1), that is

recursively obtained in the optimal decoder, by some fixed density pA(xn). Given

this density, the required estimate is obtained by incorporating the interval in-

formation {Il}
n+L
n via (4.10) and (4.11). Note that although p(xn|{Il}

n−1) is

itself approximated, the intervals {Il}
n+L
n and hence the indices {il}

n+L
n are still

optimally utilized. Hypothetically, if these intervals had been solely determined

by indices {il}
n+L
n , for any combination {il}

L
0 the corresponding intervals would

be time-invariant. Hence (4.10) and (4.11) would correspond to time-invariant

calculations, and a codebook could store the appropriate reconstructions for each

combination {il}
L
0 . But in reality the intervals {Il}

n+L
n also depend on past in-

dices through the prediction, and hence a time-invariant approach is feasible only

if the information embedded in these intervals due to past indices can be some-

how separated/decoupled from that due to the indices {il}
n+L
n . The latter could

then be utilized to build a codebook. In case of the matched predictor, (4.16)

indicates that this is exactly achievable. In fact it demonstrates this in a more

general setting where a codebook over the indices {il}
n+L
n−L′ is the objective.

In (4.16) the effect of past indices {il}
n−L′−1 on the limits of the intervals

{Il}
n+L
n−L′ is completely subsumed in the term x̃n. The remainder of the informa-

tion that determines these intervals, i.e., {il}
n+L
n−L′, is incorporated optimally into

the estimate via c′(·). Note that this term depends only indirectly on {il}
n−L′−1

through the density pEn−L′ (e|{il}
n−L′−1). Therefore, approximating this density

converts c′(·) to the look-up table c(·) without recourse to any loss of optimality
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in utilizing {il}
n+L
n−L′, i.e., the sub-optimality is solely due to the approximation

of the past via pEn−L′ (e|{il}
n−L′−1). Asymptotically, as L′ increases, the set of

optimally incorporated indices {il}
n+L
n−L′ closely fits {il}

n+L, thus c(·) tends to c′(·),

and the RHS of (4.17) is indeed the optimal estimate in (4.16).

The formulation (4.16) separates out x̃n, the component of the optimal esti-

mate that is highly correlated in time and depends on a long index history, from

c′(·), which is an innovation-like component that is relatively insensitive to the

past. This insensitivity of c′(·) to the past is itself a result of isolating in it only

that information in {Il}
n+L
n−L′ that comes from the indices {il}

n+L
n−L′. These factors

result in a much smaller L′ (and hence smaller look-up table c(·)) compared to a

codebook that implements (4.15).

Note that independent of the predictor structure,

x̂∗
n = x̃n + E[en|{il}

n+L], (4.18)

since x̃n is always a deterministic function of past indices, and

x̂∗
n(L′) = x̃n + E[en|x̃n, {il}

n+L
n−L′]. (4.19)

However, whether or not the effect of the indices {il}
n+L
n−L′ is separable from the

past, as is the case in (4.16), depends on the predictor. In other words, whether

the term E[en|x̃n, {il}
n+L
n−L′] in the above equation is well approximated by a time-

invariant c({il}
n+L
n−L′) for small L′, is predictor dependent.
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4.3.1 Design of the codebook: known density information

The codebook entries c({il}
n+L
n−L′) in (4.17) require a suitable approximation

of pEn−L′ (e|{il}
n−L′−1) by a time-invariant pdf. A good approximation is simply

pEn−L′ (e|{il}
n−L′−1) ≈ pE(e) (4.20)

where pE(·) is the stationary marginal prediction error density. While a detailed

exposition can be obtained in [6], [27], [40] we only briefly describe this pdf

here. Consider the issue of predictive quantizer design [27]. If the quantizer

thresholds (i.e., IQ(·), or equivalently fQ(·)) are fixed, the reconstructions gQ(in)

are obtained as

gQ(in) = E[en|in] =
∫

enp(en|in)den =

∫

IQ(in)

enp(en)den

∫

IQ(in)

p(en)den

,

where p(en) is the marginal (unconditional) prediction error density at time n.

But en (and thus p(en)) is itself dependent on {gQ(il)}
n−1, through the prediction

x̃n. Thus, to obtain a time invariant gQ(·) a recursive optimization needs to

be performed, which at convergence yields a corresponding stationary marginal

prediction error density pE(e).

With approximation (4.20), c′(pE(·), {il}
n+L
n−L′) in (4.16) depends only on the

indices {il}
n+L
n−L′, and is unaffected by x̃n. Hence assume x̃n−L′ = 0, and obtain the

interval sequence {Il}
n+L
n−L′, and prediction x̃n that correspond to indices {il}

n+L
n−L′,

by recursive application of (4.2). Now (4.20) implies

p(xn−L′ |{Il}
n−L′−1) ≈ pE(xn−L′ − x̃n−L′) = pE(xn−L′) . (4.21)

Given the above initialization the forward recursion of the optimal delayed de-

coder can be used to obtain p(xn|{Il}
n), the backward recursion for p({Il}

n+L
n+1 |xn),

and through (4.7), (4.8), and (4.16), we can obtain c′(pE(·), {il}
n+L
n−L′) = c({il}

n+L
n−L′).
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It should be noted that the derivation of pE(e) via the recursive approach

in [27] as well as usage of the forward and backward recursions in the above

codebook design technique require explicit knowledge of the innovation pdf.

4.3.2 Design of the codebook: training-set method

Comparing (4.16) and (4.18) we see that c({il}
n+L
n−L′) is in fact an estimate

of the prediction error at time n, given a window of neighboring indices, and is

easily obtained by employing a training-set of prediction errors. Such a strategy is

particularly useful when the innovation pdf is not explicitly known, and instead

a training set of the source is available. The procedure automatically designs

the codebook to be concurrent with the underlying unknown process statistics.

Alternatively, this approach could also be employed if the method in Sec. 4.3.1

based on the recursive evaluation of formulae becomes too complex:

1. Generate a long source sequence {xn}
N
0 according to the given source model

(alternatively, a training set of the source might be directly available).

2. Encode the source using the given DPCM encoder. Collect the prediction

error and index at each instant, to build {en}
N
0 and {in}

N
0

3. For each combination {i′l}
L′+L
0 , i′l ∈ I, set

c({i′l}
L+L′

0 ) =

∑

k ek+L′

∑

k 1
, k s.t. {ik+l = i′l, 0 ≤ l ≤ L + L′}

It should be noted that in general not all combinations {i′l}
L′+L
0 occur with the

same frequency in the index sequence. For a fixed N , some may not appear at all

in the training-set. Such combinations, due to their low probability, only mildly
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influence the distortion during operation, and the corresponding codebook entries

are just set to the associated zero-delay prediction error reconstruction gQ(i′L′).

4.4 Results for First Order AR Sources

Experiments described in this section focus on first order AR sources that

conform to the model (4.1), and include cases where the innovations are drawn

from gaussian or Laplace distributions. For instance, the transform coefficients

of prediction residual blocks in video coding, are modeled well by the Laplace

distribution [10]. The distribution parameters are adjusted to maintain unit

source variance.

0.25 0.5 0.75 1 1.25 1.5 1.75 2
−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

1.25

1.5

Rate (bits/sample)

S
N

R
 g

ai
n 

ov
er

 re
gu

al
r D

P
C

M
 (d

B
)

 

 

IDPCM
SDPCM
Proposed Optimal Decoder
Proposed Codebook Decoder

L=3

L=1

Figure 4.2. Performance comparison of different delayed decoders for a first order

gaussian AR process with ρ = 0.95. The performance curves of the proposed

optimal and codebook-based delayed decoders are almost indistinguishable

We compare the proposed optimal and codebook-based decoders, at look-

ahead values L = 1 and 3, with IDPCM (L = 1 necessarily), and SDPCM at

L = 3 (which outperforms SDPCM at L = 1 or 2). For reasons that will soon

become obvious, we have fixed L′ = 0, i.e., the delayed decoding codebook is
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Figure 4.3. Magnification of the boxed region in Fig. 4.2, showing the perfor-

mance gap between the proposed optimal delayed decoder and its codebook-based

approximation.

indexed only by present and future indices, {il}
n+L
n . The quantizer Q is a sym-

metric uniform threshold quantizer (UTQ), suitably scaled to vary the bit-rate,

estimated as the first order entropy of output indices. At every rate, and for

every choice of innovation density pZ(z), while the thresholds of the quantizer

are fixed, the reconstructions gQ(·) are optimized recursively as in [27], thereby

also computing pE(e) as required for the numerical evaluation of the delayed

decoding codebook (Sec. 4.3.1). The alternate, training-set based design leads

to essentially the same performance. We emphasize that the proposed decoding

schemes are independent of the choice of Q, and the UTQ represents a practical

case with widespread deployment in signal compression applications. Each point

on the graphs (Figs. 4.2 - 4.5) has been obtained by averaging over 20 trials, with

a random sequence of 2000 samples each. The figures depict SNR gains over the

regular DPCM decoder, versus bit-rate.

The results demonstrate that both proposed decoders substantially outper-

form SDPCM, and IDPCM. The latter are not always guaranteed to perform
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Figure 4.4. Performance comparison of different delayed decoders for a first order

gaussian AR process with ρ = 0.8.
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Figure 4.5. Performance comparison of different delayed decoders for a first order

AR process with laplacian innovations, and ρ = 0.95.

better than regular DPCM. In case of the processes considered, the performance

of the codebook-based decoder (with L′ = 0) is already very close to that of the

optimal approach. Fig. 4.3 magnifies the boxed region in Fig. 4.2 to show the

performance gap between the two methods. In other words, almost all the past

history is captured in the prediction x̃n, and c({il}
n+L
n ) is an estimate of the pre-

diction error that incorporates additional information from current and future

indices. Given the observed quality of this codebook approximation, the corre-

99



sponding curves have been omitted in Figs. 4.4 and 4.5, to avoid clutter. Note

that even with only 1 sample decoding delay the proposed approaches provide

better performance than SDPCM at a higher delay (L = 3). At low bit-rates,

as L increases, the gain over regular DPCM due to both proposed schemes in-

creases, i.e., the information {il}
n+L
n+1 provides on xn increases with decreasing

rate. At high bit-rates, there is diminishing return from increasing L. The poor

performance of IDPCM and SDPCM at high rate is attributed to the observation

made earlier in this chapter. As the rate increases, the interval In shrinks, and it

becomes more likely that the smoothed estimates, x̂sdpcm
n and x̂idpcm

n , will fall out-

side it. The optimal, and codebook-based delayed decoders, by design, account

for this interval information. The results for gaussian innovations, at different

values of ρ, indicate expectedly that higher correlation offers more to be gained

by increasing L.

4.5 Codebook Size Reduction

In the following discussion we employ the notation IQ(i) =
[

a(i), b(i)
)

to spec-

ify the limits of the quantizer interval. The index value i = 0 indicates the quan-

tization interval containing the origin, i > 0 indicates cells in the positive region,

and i < 0 cells in the negative region. We assume a symmetric mid-tread quan-

tizer, commonly employed when the source has a symmetric zero-mean pdf (the

UTQ in Sec. 4.4 is of this type). Thus, a(0) = −b(0) with the associated re-

construction gQ(0) = 0. Let ρ ≥ 0 (the case ρ < 0 simply leads to a dual of the

results that follow).

Claim 2 : Let the innovations be laplacian, i.e., pZ(z) = λ
2

exp(−λ|z|), the
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quantizer be symmetric mid-tread, and the look-ahead L = 1. If in = 0 then

the optimal delayed reconstruction x̂∗
n (and hence the codebook-based delayed

reconstruction) is sensitive only to the sign of the index in+1 (and not its actual

value).

Note: This implies that, rather than storing K reconstructions in the code-

book (corresponding to each value of in+1) when in = 0, we need only 3 (for each

sign of in+1), thus reducing the storage complexity.

Proof : By (4.12),

p(In+1|xn) =
λ

2

∫ b(in+1)

a(in+1)
exp(−λ|e − ρ(xn − x̂n)|)de. (4.22)

Consider the case in+1 > 0. Recall that in = 0. This implies that, in (4.22),

ρ(xn − x̂n) < ρb(0) < a(in+1) ≤ e, for xn ∈ In. Thus ∀in+1 > 0

p(In+1|xn) = α(in+1) exp(λρ(xn − x̂n)), xn ∈ In (4.23)

where α(in+1) captures all the dependence on the value of the index in+1 due to

the integration in (4.22). After substituting (4.23) in (4.8), we can rewrite (4.7)

as

x̂∗
n =

∫

In

xnp(xn|{Il}
n)α(in+1) exp(λρ(xn − x̂n))dxn

∫

In

p(xn|{Il}n)α(in+1) exp(λρ(xn − x̂n))dxn

(4.24)

∀in+1 > 0. Note that α(in+1) cancels out, which eliminates all dependence on

in+1. Thus, when in = 0, x̂∗
n is the same for all positive in+1. The codebook re-

construction too shares this property, as it differs from the optimal estimate only

in the approximation for the past, i.e., only in its approximation for p(xn|{Il}
n)

in (4.24). Following similar arguments, given in = 0 we can show that if in+1 < 0

then p(In+1|xn) is of the form

p(In+1|xn) = β(in+1) exp(−λρ(xn − x̂n)), xn ∈ In. (4.25)
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Here β(in+1) captures all dependence on in+1, similarly as α(in+1). Again by

substitution in (4.8), we can show that x̂∗
n of (4.7) is independent of the actual

value of the index in+1. In summary, when in = 0, the one sample delayed recon-

struction is dependent only on the sign of the index in+1. As an aside, note that

a non-causal filter that linearly combines reconstructions (i.e., neglecting index

information) can never provide this optimal reconstruction that is conditionally

unaltered by future index values.

Claim 2 can be suitably extended to the case in 6= 0, and further to L > 1,

although (for an exact representation of the optimal or codebook estimates) such

extensions may require more involved conditions than the sign of future indices.

Nevertheless, as we shall see in the results of this section, there is minimal loss

in performance if each future index in {il}
n+L
n+1 is simply coarsely quantized to the

cases > 0, < 0, and = 0. Without formal arguments, we extend the same logic to

the past indices {il}
n−1
n−L′, although this has no bearing on the experiments in Sec.

4.4 with first order sources, where L′ = 0 was nearly optimal. It does find use in

case of higher order sources (Sec. 4.6). Ordinarily the codebook c({il}
n+L
n−L′) has

KL′+L+1 reconstructions which could still be quite large if the number of quantizer

cells K is big, even though L and L′ may be modest. With the proposed mapping

of indices to just their signs, the delayed decoding codebook size is now reduced

considerably, to 3L′+LK.

The arguments and derivations of index-mapping so far assumed laplacian

innovations. Nevertheless we propose employing this technique for other distri-

butions as well. We specifically consider the performance of this technique on a

first order gaussian source (with ρ = 0.95). The deliberate mismatch (from the

assumed laplacian) results in a performance loss due to codebook size reduction.
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This source is covered by Fig. 4.2 in Sec. 4.4. For the higher four rates marked

on the figure, Table. 4.1 compares the original codebook size, and the reduced

size after index-mapping, at look-ahead values L = 1 and 3. Also provided is

the loss in performance due to the reduced size codebook which, as evidenced,

is negligible despite the mismatch. For laplacian innovations this loss is even

smaller.

Note that we assume here that K is finite, although the UTQ is theoretically

an infinite cell quantizer, and covers the entire real line with cells of equal width.

In experiments we use only a finite number of cells including overload cells that

extend to infinity at each end side. Given the innovation pdf we ensure that

the probability of overload, i.e., that an index lying outside the quantizer range,

is negligible. The quantizer range is rate-independent, while the step-size, and

hence the value of K are rate-dependent. The three lower rates in Fig. 4.2 have

K = 3, in which case there is no codebook size reduction, and are therefore

excluded from Table. 4.1. It is evident from Fig. 4.2 that at 1.5 or 2 bits/sample

most of the delayed decoding gains are obtained with 1 sample delay, in which

case a larger codebook (with L > 1) provides no tangible advantage.

4.6 Generalization to Higher Order Sources

The first order AR source (4.1), is generalized to order M as

xn =
M∑

i=1

aixn−i + zn . (4.26)

In (4.1) we employed the notation ρ in place of a1 to explicitly indicate that a1 = ρ

was in fact the correlation coefficient of the first order AR process. However, in
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Rate (bits/sample) 0.79 1.03 1.52 2.02
K 5 5 7 11

L = 1, L′ = 0
Codebook size (original) 25 25 49 121
Codebook size (reduced) 15 15 21 33
Performance loss (dB) 0.0000 0.0008 0.0215 0.0301

L = 3, L′ = 0
Codebook size (original) 625 625 2401 14641
Codebook size (reduced) 135 135 189 297
Performance loss (dB) 0.0000 0.0002 0.0192 0.0303

Table 4.1. Comparison of codebook sizes and performance loss for gaussian AR

source with ρ = 0.95, when the index-mapping technique of Sec. 4.5 is applied.

Although derived under the assumption of laplacian innovations this technique

works well for the (mismatched) gaussian case too.

the general Mth order case the inter-sample correlations are dependent on, but

not the same, as the coefficients ai in (4.26). DPCM is implemented similarly to

the first order case, except that the matched predictor of order M :

x̃n =
M∑

i=1

aix̂n−i (4.27)

This Mth order process of random scalars in R, can be equivalently viewed as

a first order process of random vectors in R
M , by a formulation similar to the

Kalman filtering plant model of (4.4), albeit with a different Ψ. The current

structure of the recursions in Sec. 4.2 for the optimal delayed decoder still hold,

but the intervals In are replaced by corresponding M-dimensional segments In,

and integrals, auxiliary functions in the algorithms, and densities are all defined

in the vector space R
M . Needless to say, the increased dimensionality renders the

optimal delayed decoder cumbersome, in particular, due to the M-dimensional

convolutions now implicit in (4.9) and (4.11). But we note that the derivation

in Sec. 4.3 of the codebook-based delayed decoder still stands, with the matched
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predictor now defined as (4.27), and it retains its low computational complexity.

The reconstructions are still given by (4.17), and asymptotically this is optimal.

We present here the application of the codebook-based decoder to second and

third order sources. Again, the DPCM encoder employed a matched predictor

(here, (4.27)). Similar to the first order case (Sec. 4.4) the UTQ is used, with

scaling to achieve the required bit-rate. But the optimization of the reconstruc-

tions gQ(·) by the iterative method in [27], that alternates between optimizing the

quantizer given the prediction error density, and estimating the prediction error

density given the quantizer, is highly complex for process orders > 1. Hence we

employ a different predictive quantizer design strategy: training-set based closed

loop optimization [22]. Given a training-set of the source {xn}
N
0 , and an initial

quantizer Q0, the DPCM encoder is run to generate the prediction errors {en}
N
0 .

Given this prediction error training sequence a new reconstruction for each quan-

tizer cell is calculated as the mean of the prediction errors that lie within the cell

(the UTQ partitions are fixed and need not be optimized). This results in a new

quantizer Q1, that replaces Q0 in the encoder. These two steps are alternated

till the the quantizer designs of consecutive iterations converge. In certain pre-

dictive coding scenarios such a closed loop optimization can fail to converge, and

alternatives have been proposed [52]. But with respect to the simple sources and

fixed quantizer partitions considered here such problems were not encountered.

With the encoder fixed, the codebook for the delayed decoder is designed by the

training-set based method of Sec. 4.3.2, which now offers a distinct advantage

over the alternate, formula-based approach in Sec. 4.3.1 due to the higher source

order. Extension of IDPCM and SDPCM to Mth-order sources can be found in

the respective references.
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Fig. 4.6 and Fig. 4.7 compare the performance of the competing schemes

on a second order source with (a1, a2) = (1.5,−0.6), and laplacian innovations,

and a third order source with (a1, a2, a3) = (1.526,−0.773, 0.101), and gaussian

innovations, respectively. The coefficients of the third order source correspond to

Law’s 3-tap filter [20], [77]. The first two autocorrelation coefficients (i.e., with

lag 1 and 2) for the second order source are 0.9375 and 0.8063, and in the third

order case the first three coefficients are 0.9001, 0.6914, and 0.4604, respectively.

In both cases, the parameters of the innovation pdf are adjusted to maintain

unit source variance. In the second order case, all competing methods used a

1-sample look-ahead, and in the third order case, L = 2. Unlike in Sec. 4.4,

the delayed decoding codebook is now indexed by past indices too. In case of

both sources it is observed that limiting the window to just one past index, i.e.,

L′ = 1, results in the codebook-based delayed decoder performing slightly worse

than SDPCM at the lowest bit-rate considered (∼ 0.25 bits/sample). As the

window is increased to encompass more past indices (L′ = 3), this sub-optimality

is overcome. It should be emphasized that the decoding delay of all competing

methods is still the same, and the performance curve of the optimal delayed

decoder with this value of delay is just the envelop of the curves for the codebook

decoder with increasing L′. Note that with L′ = 3, the codebook-based decoder

provides substantial gains over both SDPCM and IDPCM, and this is a lower

limit on the optimal performance. Increasing L′ to 4 increased the gains by

about 0.05 dB at the lower bit-rates. Since our experiments with a full-size

delayed decoding codebook yielded very small performance improvements over

the reduced-size codebook motivated in Sec. 4.5, the results presented in Fig.

4.6 and Fig. 4.7 were actually obtained with the latter, i.e., each past and future
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index is mapped to one of the cases, > 0, < 0, and = 0, before the codebook is

looked up.

0.25 0.5 0.75 1 1.25 1.5 1.75 2
−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Rate (bits/sample)

S
N

R
 g

ai
n 

ov
er

 re
gu

al
r D

P
C

M
 (d

B
)

 

 

IDPCM (L=1)
SDPCM (L=1)
Proposed Codebook Decoder (L=1)

L’=3

L’=1

Figure 4.6. Performance comparison of different delayed decoders for a 2nd order

AR process with laplacian innovations.
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Figure 4.7. Performance comparison of different delayed decoders for a 3rd order

gaussian AR process.

The size of the delayed decoding codebook, along with the number of quan-

tizer cells K, at different bit-rates for the second order process with laplacian

innovations is enumerated in Table. 4.2. The length of the training-set employed

in the codebook design was 50000 for both cases L′ = 1 and L′ = 3, although the

latter necessitates a larger codebook. As noted in Sec. 4.3.2, some combinations
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of the indices {il}
n+L
n−L′ are extremely infrequent, and due to their unavailability

in the limited training set the delayed decoding reconstruction in these cases de-

faults to the zero-delay reconstruction gQ(in). The ‘effective size of the codebook’

in Table. 4.2 provides the number of reconstructions of the complementary type

(i.e., those that are somewhat frequent), and these are the ones that really provide

the observed delayed decoding gains. Note that in most cases the effective size is

just a small fraction of the actual size (which in turn has already been reduced

compared to the full codebook due to index mapping). In other words, most of

the entries in this delayed decoding codebook correspond to events (i.e., index

windows {il}
n+L
n−L′) that rarely occur in the index sequence. This suggests the

potential for further pruning of the codebook. For instance, the decoder during

operation could first check by some simple rule whether the index window is one

that appears often in the index sequence, or is a rare event. Only in the former

case delayed decoding is employed, which now requires a small codebook with

entries corresponding to only the few frequent events. It must also be noted that

since the quantizer and the process distributions employed in these examples are

symmetric, there is an in-built symmetry in the delayed decoding codebook too,

which can by itself reduce all the codebook sizes seen so far by at least a factor

of two.
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Rate (bits/sample) 0.26 0.47 0.74 1.03 1.20 1.46 1.90
K 5 7 9 15 17 25 39

L = 1, L′ = 1
Codebook size 45 63 81 135 153 225 351

(reduced by index mapping)
Effective size of the codebook 12 14 24 30 38 50 74

L = 1, L′ = 3
Codebook size 405 567 729 1215 1377 2025 3159

(reduced by index mapping)
Effective size of the codebook 32 46 102 180 230 316 458

Table 4.2. Comparison of the codebook size at different bit-rates for the second

order laplacian source, and the effective size that provides delayed decoding gains

4.7 Encoder Modification to Incorporate Delayed

Decoding

A DPCM encoder that incorporates a linear predictor such as (4.2) or (4.27)

embeds within it a local decoder to obtain the reconstruction of prior samples.

A natural question is if the improved estimate obtainable by delayed decoding

could also be generated by the encoder, and employed for enhanced prediction.

In effect, the delayed decoding gain would be fed back into the prediction loop,

thus amplifying it and improving DPCM performance further. But the restriction

is that the encoder should be zero-delay. Consider incorporating a look-ahead

L = 1 into the encoder’s local decoder. The delayed reconstruction of xn can be

obtained only when in+1 is known. Thus xn+1 itself cannot be predicted from

the delayed reconstruction of xn, but if the predictor is second order, then the

prediction for xn+2 can incorporate in it the 1-sample delayed reconstruction of

xn. In general, an encoder with an Mth-order linear predictor can incorporate

an L-sample delayed decoder to reconstruct M − L of the M samples it linearly
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combines in the prediction. The specific case of an encoder with a second order

predictor (matched to the second order source with laplacian innovations in Sec.

4.6) is discussed here as an example. Naturally, L = 1 is the only possibility in

this case. The general principle is as follows. The delayed reconstructions are fed

back into the prediction loop, via the prediction:

x̃′
n = a1x̂n−1 + a2x̂

d
n−2 (4.28)

where we use the notation x̃′
n to distinguish from the prediction x̃n employed in

regular DPCM. The zero-delay reconstruction x̂n is now given by

x̂n = x̃′
n + gQ(in) . (4.29)

With a 1-sample delay, the decoder reconstructs xn as x̂d
n. This delayed re-

construction is also produced at the encoder’s local decoder, and employed for

prediction in (4.28). As alluded to in Sec. 4.1.1, this type of encoder modification

has already been proposed in [77], where the IDPCM principle was employed to

obtain x̂d
n. Specifically, in the example here this would be,

x̂d
n = b1x̂n+1 + b−1x̂

d
n−1 + b−2x̂

d
n−2 . (4.30)

The non-causal IIR smoothing filter (i.e., the coefficients bl above) are obtained

using the same procedure described in Sec. 4.1.1. Since the process is second

order, bl = 0 for l < −2. The DPCM scheme with a modified encoder that

employs (4.30) as the definition of x̂d
n will be henceforth referred to as IDPCM-

Enc.

Alternatively, we could obtain x̂d
n via the optimal delayed decoder proposed

in this chapter, i.e., setting x̂d
n = E[xn|{Il}

n+1]. Since this is computationally

cumbersome we approximate:

x̂d
n = x̃′

n + c∗({il}
n+1
n−L′) (4.31)
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The need for the superscript ∗ in c∗(·) will become obvious shortly. In what

follows, we use the abbreviation CDD-Enc to refer to the DPCM scheme with a

modified encoder which embeds in it the codebook-based delayed decoder (4.31).

The regular codebook-based delayed decoder, with the DPCM encoder unal-

tered, as discussed in prior sections, will be referred to as CDD. For both CDD

and CDD-Enc, L′ = 3. Since this type of prediction loop modification has not

been attempted in the case of SDPCM [20], we exclude it from the discussion

in this section. The objective here is to demonstrate that incorporating the pro-

posed delayed-decoding approaches suitably into the prediction loop can result

in performance improvements similar to what IDPCM-Enc achieves compared to

regular IDPCM.

The performance of regular DPCM, IDPCM, CDD, IDPCM-Enc, and CDD-

Enc for the second order laplacian source of Sec. 4.6 is compared in Fig. 4.8, in

terms of SNR vs bit-rate. Unlike in Sec. 4.4 and Sec. 4.6, the encoders are not

the same for all schemes, and hence the same entropy output cannot be ensured.

Strictly speaking, for both IDPCM-Enc and CDD-Enc, the modified predictor

(4.28) results in a new prediction error density, and hence the quantizer recon-

structions gQ(·) need to be obtained anew for both types of encoders separately.

But IDPCM-Enc as implemented in [77] employed no such optimization, and

used the same quantizer as the regular DPCM encoder. In our case, this is just

the quantizer designed in Sec. 4.6 for the specific source considered here. In order

to ensure a fair comparison this quantizer has been used at the encoder in all the

schemes, including CDD-Enc. Note that the design of the delayed decoding code-

book as well depends on the prediction error statistics. In the case of CDD, the

encoder itself was unaltered, and the prediction error statistics were thus solely
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determined by the choice of quantizer and predictor coefficients. Thus, given the

encoder and a training set of the source, the design procedure in Sec. 4.3.2 could

be followed to obtain the appropriate delayed decoding codebook, c({il}
3
0). But

in the case of CDD-Enc the prediction error statistics are themselves dependent

on the delayed decoding codebook, as the delayed reconstructions are fed back

into the prediction loop. Therefore, although the quantizer itself is unaltered,

we follow a closed loop optimization procedure to obtain the delayed decoding

codebook for CDD-Enc, i.e., the training-set based codebook design procedure

of Sec. 4.3.2 is slightly modified. We start off with an initial guess for the code-

book: the same as c({il}
3
0) employed in CDD. Now the modified DPCM encoder,

with this delayed decoding codebook embedded in it, is run to obtain a new set

of prediction errors, and the codebook recalculated. We repeat this procedure

till the codebooks of consecutive iterations converge. Since the eventually ob-

tained codebook is different from c({il}
3
0), employed in CDD, we referred to it as

c∗({il}
3
0) in (4.31). The performance gap between CDD-Enc and CDD, is almost

the same as between IDPCM-Enc and IDPCM: about 1-dB at rates 0.25-0.75

bits/sample. Note that IDPCM-Enc retains the poor performance of IDPCM at

high-rates. CDD-Enc performs better than IDPCM-Enc by about 0.5dB at rates

of about 0.25-0.5 bits/sample, and is substantially better at rates close to 1.25

bits/sample.

4.8 Conclusion

An optimal delayed decoding algorithm for predictively encoded autoregres-

sive sources is proposed, that obtains the optimal reconstruction of a sample via
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an estimation-theoretic approach that recursively calculates the sample’s pdf con-

ditioned on all information known to the decoder for a given delay or look-ahead.

Irrespective of the bit-rate, or innovation probability density, the algorithm en-

sures optimal reconstruction. The optimal delayed decoder in turn motivates an

approximate codebook-based approach, which is indeed asymptotically (as the

codebook-size increases) optimal, and has performance almost indistinguishable

from the former even at very modest dimensions. The codebook approach has

the obvious advantage of low implementation complexity, and is amenable as

well for a training-set based design. Thus, it is particularly useful for delayed

decoding of higher order sources, where the recursion-based optimal decoder is

rendered cumbersome. Insights into the optimal delayed decoder also motivate a

methodology for codebook size reduction, based on an index mapping technique.

Simulations with first, second, and third order sources demonstrate the consid-

erable performance gains of both the optimal and codebook-based approaches,

over existing smoothing post-filters. Finally, an example encoder modification

that incorporates delayed decoding at the local decoder is demonstrated, which

further amplifies the delayed decoding gains via feedback in the prediction loop.
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Figure 4.8. Performance comparison of delayed decoding schemes with and with-

out encoder modifications: feedback of delayed decoding gains in the prediction

loop considerably improves low bit-rate performance. Source is 2nd order with

laplacian innovations.
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Chapter 5

Conclusion and Future Directions

This dissertation has primarily focused on optimal decision making at the encoder

or decoder in signal compression, via incorporation of delay.

In the case of encoding delay, trellis-based dynamic programming approaches

were developed that employed delay for optimal encoding parameter selection

in audio coding. Such approaches are of particular benefit to applications that

employ off-line compression, to which category many audio coding applications do

belong. Significant gains compared to standard methods, that employ a myopic

encoding process, were provided by the proposed algoritm. Motivated by the rate-

distortion optimization approach followed in this delayed encoding paradigm, we

explored certain deficiencies in the audio distortion metric itself, and suggested

modifications that substantially improved the subjective quality of the coded

audio.

In the context of decoding delay, we proposed the optimal algorithm for decod-

ing predictively encoded sources, when a finite delay is admissible at the decoder.
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This estimation-theoretic algorithm recursively calculates the probability density

function of each sample, conditioned on all information available at the decoder,

and obtains the optimal reconstruction via conditional expectation. Experiments

indicated substantial gains over prior work that adopted a smoothing approach to

the problem. The optimal delayed decoder in turn motivated a codebook-based

decoder that is nearly optimal even with modest codebook size (or memory).

The insight into the optimal delayed decoder also motivated approaches for re-

duction of the size of this codebook without significant performance loss. This

delayed decoding approach finds utility in conventional prediction-based applica-

tions, such as motion compensated video codecs, as well as in emerging low-delay

applications where prediction is expressly preferred over competing transform-

based techniques, due to the unacceptable complexity or framing delays of the

latter.

5.1 Future Directions

• Unified speech and audio coding: An examination of the subjective

tests conducted to evaluate the distortion metric modification of Sec. 3.2

indicates substantial improvements in the quality of speech coded by the

audio coder. This suggests that that the distortion metric may be the key

to obtain a unified audio and speech coder, an area currently of substantial

interest in the industry. We conjecture that this MDST-based modifica-

tion to the distortion metric, that is cognizant of the noise envelop rather

than just its projection on the MDCT basis, parallels the approach fol-

lowed in speech codecs that tries to preserve the spectral envelop in the

116



LPC coefficients. More concrete work that analyzes the effect of the pro-

posed distortion metric on speech samples is one possible extension to be

considered.

• Encoder optimization for delayed decoding: In Sec. 4.7 we consid-

ered an example encoder modification for improved prediction, based on

incorporating delayed decoding locally at the DPCM encoder. But the

quantizer at the encoder was not optimized for the true prediction error

density, that results from the refined reconstructions obtained by delayed

decoding. A possible future direction is to optimize the quantizer, and the

delayed decoding codebook jointly, which should considerably improve over

the performance demonstrated in Sec. 4.7. A closed loop approach for this

optimization might run into instability issues, and we might need to devise

an appropriate pseudo-closed loop optimization similar to the one in [52].

• Adaptive delayed decoding: While we assumed a time-invariant DPCM

encoder throughout Chapter 4, future work could consider the application

of the optimal delayed decoder in adaptive predictive coding schemes (such

as ADPCM). Note that the optimal delayed decoder (Sec. 4.2.1) assumes

no particular form of the predictor or the quantizer. It simply requires the

appropriate interval information, and the source model (innovation density)

at every instant n, and is thus amenable to adaptation over time of both

source statistics as well as the encoder. Thus we can consider application of

the delayed decoder to a practical ADPCM-based speech coding setting. An

interesting, albeit complicated, research direction would be to arrive at an

appropriate adaptation strategy to modify the codewords of the codebook-

based delayed decoder in tandem with the existing adaption technique for
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the predictor or quantizer in the ADPCM codec. While the discussion of

experiments and results in Chapter 4 was limited to generic scalar sources,

preliminary results of employing the proposed ET algorithm for delayed

video decoding in the H.264 framework have been demonstrated in [39].
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Appendix A

A.1 Proof of Equation (4.16)

Consider (4.9) that provides the pdf of xn conditioned on all past information,
{il}

n−1. This can be re-written as

p(xn|{Il}
n−1) =

∫

In−1

p(xn−1|{Il}
n−2)pZ(xn − ρxn−1)dxn−1

∫

In−1

p(xn−1|{Il}
n−2)dxn−1

=

∫

IQ(in−1)

pEn−1(e|{il}
n−2)pZ(xn − x̃n + ρgQ(in−1) − ρe)de

∫

IQ(in−1)

pEn−1(e|{il}
n−2)de

(A.1)

The first equality is by application of (4.10) as employed at time n − 1. Substi-
tution of xn−1 = e + x̃n−1, the equivalence {il}

n ⇔ {Il}
n, and recognizing that

x̃n = ρgQ(in−1) + ρx̃n−1 for the predictor (4.2), yields the second equality. We em-
ploy the subscript En−1 to indicate that pEn−1(e|{il}

n−2) is the prediction error pdf
at time n − 1 (conditioned on the relative past {il}

n−2). Let P be the set of func-
tions which are valid pdfs in R. Define the functional Φ(x, i, p(·)) : R × I × P → R

as:

Φ(x, i, p(·)) =

∫

IQ(i)

p(e)pZ(x + ρgQ(i) − ρe)de

∫

IQ(i)

p(e)de
. (A.2)

Then (A.1) implies that, p(xn|{Il}
n−1), is the above functional evaluated at (xn−

x̃n, in−1, pEn−1(e|{il}
n−2)).

Claim 3 : In case of the matched predictor (4.2), a time invariant quantizer Q,
and the stationary process (4.1), p(xn|{Il}

n−1) can be obtained by the evaluation

128



of a functional of the form Φ(x, {il}
L′−1
0 , p(·)), at (xn−x̃n, {il}

n−1
n−L′, pEn−L′ (e|{il}

n−L′−1)),

∀L′ ≥ 0. (At L′ = 0, set {il}
−1
0 = {il}

n−1
n = {})

Proof sketch: The case L′ = 0 is trivial: the functional is just Φ(x, {}, p(·)) = p(x).
It simply maps the (conditional) prediction error pdf at time n to the conditional
pdf of xn, via p(xn|{Il}

n−1) = pEn
(xn − x̃n|{il}

n−1). The case L′ = 1 is already
proved. Now apply induction on L′.

Claim 1 (see Sec. 4.2.2) and Claim 3 along with (4.8) and (4.10) provide the
following expression for the optimal estimate of (4.7).

x̂∗
n =

∫

In

xnp(xn|{Il}
n−1)p({Il}

n+L
n+1 |xn)dxn

∫

In

p(xn|{Il}
n−1)p({Il}

n+L
n+1 |xn)dxn

=

∫

In

xnΦ(xn − x̃n, {il}
n−1
n−L′, pEn−L′ (·))Λ(xn − x̂n, {il}

n+L
n+1 )dxn

∫

In

Φ(xn − x̃n, {il}
n−1
n−L′ , pEn−L′ (·))Λ(xn − x̂n, {il}

n+L
n+1 )dxn

Substituting xn = en + x̃n, and x̂n − x̃n = gQ(in) yields,

x̂∗
n = x̃n +

∫

IQ(in)

enΦ(en, {il}
n−1
n−L′, pEn−L′ (·))Λ(en − gQ(in), {il}

n+L
n+1 )den

∫

IQ(in)

Φ(en, {il}
n−1
n−L′, pEn−L′ (·))Λ(en − gQ(in), {il}

n+L
n+1 )den

, x̃n + c′(pEn−L′ (·), {il}
n+L
n−L′) (A.3)

where we use the abbreviation pEn−L′ (·) in place of pEn−L′ (e|{il}
n−L′−1).
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