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ABSTRACT
Today’s diverse data consumption devices and heterogeneous

network conditions require content to be coded at different quality
levels. Conventional scalable coding, which generates hierarchical
layers that refine quality incrementally, introduces a performance
penalty, as most sources are not successively refinable at finite de-
lays for the distortion measure employed and the combination of
rates at each layer. On the other hand encoding different copies
at required quality levels is clearly wasteful in resources. We pre-
viously proposed a common information based framework with a
relaxed hierarchical structure to generate common and individuals
bit-streams for different quality levels, to provide the flexibility of
operating at points between conventional scalable coding and inde-
pendent coding. In this paper we propose a quantizer design tech-
nique for this layered coding framework, which enables extracting
common information between two quality levels with negligible per-
formance penalty. Experimental results for Laplacian sources, which
are prevalent in practical multimedia systems, substantiate the effec-
tiveness of our proposed technique.

Index Terms— Laplacian Sources, Dead-Zone Quantizer, Scal-
able Coding, Common Information.

1. INTRODUCTION

Technological advances ranging from multigigabit high-speed In-
ternet to wireless communication and mobile, limited resource re-
ceivers, have created an extremely heterogeneous network scenario
with data consumption devices of highly diverse decoding and dis-
play capabilities, all accessing the same content over networks of
time varying bandwidth and latency. The primary challenge is to
maintain optimal signal quality for a wide variety of users, while en-
suring efficient use of resources for storage and transmission across
the network. The simplest solution to address this challenge is stor-
ing and transmitting independent copies of the signal for every type
of user the provider serves. This solution is highly wasteful in re-
sources and results in extremely poor scalability. In an alternative
solution, conventional scalable coding [1, 2] generates layered bit-
streams, wherein a base layer provides a coarse quality reconstruc-
tion and successive layers refine the quality, incrementally. De-
pending on the network, channel and user constraints, a suitable
number of layers is transmitted and decoded, yielding a prescribed
quality level. However, it is widely recognized that there is an in-
herent loss due to the scalable coding structure, with significantly
worse distortion compared to independent (non-scalable) encoding
at given receive rates [3, 4, 5], as most sources are not successively
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refinable at finite delays for the distortion measure employed and
the combination of rates at each layer. Moreover for fixed receive
rates, non-scalable coding and conventional scalable coding have
the highest and the lowest total transmit rate, respectively. Thus,
non-scalable coding and conventional scalable coding represent two
extreme points in the tradeoff between total transmit rate and distor-
tions at the decoders, with fixed receive rates.

In our previous work we proposed a novel layered coding
paradigm for multiple quality levels [6] inspired by the informa-
tion theoretic concept of common information of dependent random
variables [7, 8, 9], wherein only a (properly selected) subset of the
information at a lower quality level is shared with the higher quality
level. This flexibility enables efficiently extracting common infor-
mation between quality levels and achieve intermediate operating
points in the tradeoff between total transmit rate and distortions at
the decoders, in effect controlling the layered coding penalty. Our
early paper [6] established the information theoretic foundations
for this framework and a later paper [10] employed this framework
within a standard audio coder to demonstrate its potential. In this
paper we tackle the important problem of designing quantizers for
this layered coding framework, specifically for two quality levels
with fixed receive rates. We need to design three quantizers, one
for the common layer, whose output is sent to both the decoders,
and two other quantizers refining the common layer information
at two quality levels, whose output is sent individually to the two
decoders. We first propose to employ an optimal quantizer for a
given rate at the common layer. Given this quantizer, we design two
other optimal quantizers at two different required rates, conditioned
on each common layer interval. Finally the optimal common layer
rate is estimated numerically by trying multiple allowed common
rates and selecting the highest one amongst those with negligible
loss in distortion compared to non-scalable coding. We then adapt
this technique to the practically important Laplacian sources.

The rest of the paper is organized as follows: In Part 2, Lapla-
cian sources and their optimal quantizers are discussed. In Part 3,
common information based layered coding paradigm is introduced.
In Part 4, quantizer design for layered coding of a general source and
then specifically a Laplacian source is described. In Part 5, experi-
mental results substantiating the proposed technique are presented.
Finally, we conclude in Part 6.

2. LAPLACIAN SOURCES

In many practical applications, multimedia sources are modeled by
the Laplacian distribution,

fL(x) =
λ

2
e−λ|x|,
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Fig. 1. The optimal scalar dead-zone quantizer for Laplacian sources
with nearly uniform reconstruction rule.

where λ is Laplacian parameter.
Hence considerable attention has been focused on its optimal

quantization, which is discussed in the following subsections.

2.1. Efficient Scalar Quantization of Laplacian Sources

In [11], the optimal entropy constrained quantizer for the Laplacian
source was derived to be the dead-zone plus uniform threshold quan-
tization classification rule and the nearly uniform reconstruction rule
(as illustrated in Fig. 1). This dead-zone quantizer (DZQ) has uni-
form step size in all of the intervals, except the dead-zone interval
around zero, which is wider than the other intervals.

2.2. Scalable Coding of Laplacian Sources

2.2.1. In Current Multimedia Standards

In current scalable coding standards such as, scalable HEVC [12]
for video, and scalable AAC [13] for audio, the base layer employs
DZQ for quantizing the source. Then, in the enhancement layer, a
scaled version of the base layer DZQ quantizes the base layer recon-
struction error.

2.2.2. Conditional Enhancement Layer Quantization (CELQ)

In [5], an efficient approach for scalable coding of Laplacian sources
is proposed, wherein:

• The base layer employs a DZQ.

• The enhancement layer quantizers are conditioned on the base
layer quantization interval: Use DZQ if a dead zone interval
was established by the base layer, and use a uniform quantizer
otherwise (as illustrated in Fig. 2).

This improved scalable coder still suffers from performance penalty
compared to non-scalable coding.

3. COMMON INFORMATION BASED LAYERED CODING
PARADIGM

In this section we explain the novel layered coding paradigm and im-
portance of good quantizer design for this paradigm, with a toy ex-
ample of uniform distribution. The best entropy constrained scalar
quantization of a uniformly distributed random variable with rate
log(N), where N is an integer, is a uniform quantizer with N quan-
tization levels (as proven in [14]). Fig. 3(a) depicts the partition
points for quantizing a uniform random variable, U(0, 6), with rates
R1 = 2 and R2 = log(6), resulting in distortion D1 and D2, re-
spectively. Clearly, all the partition points of the quantizer 1, are

DZQ

Uniform

DZQ
Is it 0?

Yes

No

Fig. 2. Conditional enhancement layer quantizer for Laplacian
sources. Based on the base layer DZQ interval, the enhancement
layer quantizer is chosen.

not aligned with partition points of quantizer 2. This implies that
scalable coding with base layer at rate 2, and enhancement layer at
rate log(6) − 2 (to achieve same receive rates at the decoders), will
result in the enhancement layer distortion that is worse than inde-
pendently quantizing at rate log(6). Hence, a uniformly distributed
source is not successively refinable for mean squared error (MSE)
distortion measure, and rates 2 and log(6)−2. The fact that a source
is not successively refinable must imply that the information required
to achieve D1 is not a proper subset of the information required to
achieve D2. However, it is obvious that there is a considerable over-
lap in information required to reconstruct at the two distortion levels,
thus independent encoding is wasteful. The common information
based layered coding paradigm addresses this challenge by sending
only part of the information required to achieve D1 to the decoder
reconstructing at lower distortion D2. That is, the encoder generates
3 different packets (as illustrated in Fig. 4):

• At rate R1, sent only to the decoder reconstructing at D1

• At rate R2, sent only to the decoder reconstructing at D2

• At rate R12, sent to both the decoders.

Conventional scalable coding is achieved in this paradigm when
R1 = 0, and non-scalable coding is achieved when R12 = 0. With
appropriately designed quantizers, this framework provides the extra
degree of freedom required to achieve rate-distortion optimality at
both the layers with a total transmit rate lower than that of non-
scalable coding. For our specific example of uniformly distributed
source at receive rates of 2 and log(6), Fig. 3(b) depicts the quan-
tizers for the layered coding paradigm, where rate R12 = 1 is sent
to both decoders, and rates R1 = 1 and R2 = log(3) are sent
to decoder 1 and 2, respectively. The overall quantizers with these
partitions are same as the optimal individual quantizers, ensuring the
same distortions are achieved at the decoders. However, we reduce
the total transmit rate by 22% when compared to non-scalable cod-
ing. This example clearly demonstrates the utility of the proposed
paradigm with appropriately designed quantizers extracting com-
mon information between different quality levels. In the following
section we propose a design technique for quantizers of a general
source distribution, to be employed within the common information
based layered coding framework.

4. QUANTIZER DESIGN FOR COMMON INFORMATION
BASED LAYERED CODING

For fixed received rates, Rr1 = R12 + R1 = c1 and Rr2 =
R12 + R2 = c2, at decoder 1 and 2, respectively, there is a tradeoff
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Fig. 3. Partition points for quantizing a U(0, 6). (a) Depicts individ-
ual quantizers at rates R1 = 2 and R2 = log(6). (b) Depicts quan-
tizers for the common information based layered coding paradigm,
where rate R12 = 1 is sent to both the decoders, and rates R1 = 1
and R2 = log(3) are sent to corresponding decoders.

between total transmit rate, Rt = R12 + R1 + R2, and sum of dis-
tortions at the decoders, D1 +D2. The two extremes of this tradeoff
are: i) non-scalable coding, which uses the highest Rt = c1 + c2
while achieving the lowest distortions of D∗(c1) + D∗(c2), where
D∗(·) is the optimal distortion at a given rate; and ii) conventional
scalable coding, which uses the lowest Rt = c2, but significantly
worse distortion than non-scalable coding at the enhancement layer.
We would like to design our layered coding quantizers to optimize
this tradeoff, thus we define our cost function as

J = Rt + α∆D, s. t. Rr1 = c1, Rr2 = c2,

where, ∆D = D1 + D2 − D∗(c1) − D∗(c2), and α controls the
tradeoff. Minimizing this cost function gives us quantizers which
achieve the best distortions at the decoders for a given total transmit
rate and fixed receive rates. We design our quantizers in the follow-
ing steps:

1. For the common layer, we design the optimal entropy con-
strained quantizer for the source distribution at a given rate,
R12.

2. For the two individual layers, we design optimal entropy con-
strained quantizers for each common layer quantizer interval,
at their corresponding rates of R1 and R2.

3. We then numerically estimate the optimal common layer rate,
by trying multiple allowed common rates and selecting the
one that results in minimum cost J .

4.1. Quantizer Design for Laplacian Sources

For the practically important case of Laplacian source distribution
the above generic design is adapted as below:

1. For the common layer, we estimate the best step size for the
DZQ at a given rate, R12.

2. For the two individual layers, we design optimal entropy con-
strained quantizers for each common layer quantizer interval,

Fig. 4. Common information based layered coding paradigm. One
packet at rateR12 is sent to both the decoders, and individual packets
at rate R1 and R2 are sent to decoder 1 and 2, respectively.

at their corresponding rates of R1 and R2. Specifically, we
iteratively optimize the quantizer interval partitions and re-
construction points to minimize the entropy constrained dis-
tortion, with smart initializations of,

• A DZQ for the dead zone interval, and

• A uniform quantizer for other intervals,

of the common layer quantizer.

3. We then numerically estimate the optimal common layer rate,
by trying multiple allowed common rates and selecting the
one that results in minimum cost J .

Since the dead zone interval is a truncated Laplacian distribution and
other intervals are a truncated exponential distribution, we select the
initializations in Step 2 above to be the optimal entropy constrained
quantizers of their corresponding non-truncated distributions.

Note that, we can achieve a non-zero common rate with negli-
gible ∆D, if the DZQ at rate R12 is such that all its partition points
align closely with partition points of DZQ at both rate c1 and c2.
Conditions for such an alignment of partitions between two DZQ
were derived in [15] as, the dead-zone of the coarser DZQ has to be
divided into 2n + 1 intervals, and other intervals of this DZQ have
to be divided into m+ 1 intervals, with 2n/m = z, where, n and m
are integers, and z is the ratio of the dead-zone interval length over
other intervals’ length. Our design technique numerically estimates
the common layer DZQ which closely satisfies these conditions with
DZQ at both rate c1 and c2.

Note that the proposed design technique does not ensure joint
optimality of all the quantizers, particularly since we independently
optimize the common layer quantizer (e.g., DZQ for Laplacian)
without considering its effect on other layers. Despite this assump-
tion we obtain considerable performance improvements (as will
be discussed in Section 5). However, joint optimization of all the
quantizers will be one of our future research directions.

5. EXPERIMENTAL RESULTS

In our experiments we used a Laplacian source with λ = 1 and the
distortions at each decoder are measured in dB. For our first experi-
ment we used fixed receive rates of c1 = 1.6 and c2 = 2.8. In Fig. 5
we plot, the Rt versus ∆D curve obtained by employing quantizers
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Non scalable total transmit rate Proposed method total transmit rate Total transmit rate reduction
R12 +R1 +R2 = RNSt R12 +R1 +R2 = RPt (RNSt −RPt )/RNSt

Rr1 = 1.6, Rr2 = 2.8 0 + 1.6 + 2.8 = 4.4 0.4 + 1.2 + 2.4 = 4 (4.4 − 4)/4.4 = 9%
Rr1 = 1.5, Rr2 = 2.3 0 + 1.5 + 2.3 = 3.8 0.3 + 1.2 + 2 = 3.5 (3.8 − 3.5)/3.8 = 8%
Rr1 = 1.4, Rr2 = 2 0 + 1.4 + 2 = 3.4 0.3 + 1.1 + 1.7 = 3.1 (3.4 − 3.1)/3.4 = 9%

Table 1. Total transmit rate for non-scalable coding and proposed paradigm operating with negligible loss in distortion.
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Fig. 5. Total transmit rate vs distortion deviations at the decoders.

designed by our proposed technique at various common layer rates
(R12) ranging from 0 bits (i.e., non-scalable coding) to 1.6 bits (i.e.,
scalable coding using CELQ), and the convex hull for the proposed
paradigm, which is obtained using the time sharing argument. Note
that scalable coding employed in current standards has around 1.5
dB distortion loss compared to efficient scalable coding, which itself
has around 0.8 dB distortion loss compared to non-scalable coding.
The proposed technique can operate at all points along the convex
hull and at considerably better performance compared to the scal-
able coding of current standards.

In Fig. 6, we plot J versus α for non-scalable coding, efficient
scalable coding using CELQ, and proposed paradigm. We can see in
this figure that the proposed paradigm bridges the non-scalable and
scalable coding techniques, while performing at least as good as one
of them and better than both of them at many operating points, which
demonstrates the utility of the proposed technique in achieving better
tradeoff between total transmit rate and distortions at the decoders.

Moreover, note that in Fig. 5 at Rt = 4 or equivalently R12 =
0.4, we obtain distortions that are very close to that of non-scalable
coding at a 9% reduction in total transmit rate compared to that of
non-scalable coding. Thus we conducted another experiment with
different fixed receive rate combinations and obtained similar results
of transmit rate savings with negligible distortion loss, which are
shown in Table 1 to demonstrate the capability of the proposed tech-
nique to efficiently extract the common information between differ-
ent quality levels.

6. CONCLUSION

This paper demonstrates a common information based layered
coding framework with appropriately designed quantizers, which

α
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J
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4.5

5

5.5

6 Non scalable
Scalable(CELQ)
Proposed method

Fig. 6. Cost J vs tradeoff parameter α for non-scalable coding, scal-
able coding using CELQ, and proposed paradigm.

overcomes the limitations of conventional scalable coding and non-
scalable coding, by providing the flexibility of transmitting common
and individual bit-streams for different quality levels. The proposed
quantizer design technique enables efficiently extracting common
information between different quality levels with negligible perfor-
mance penalty, and also enables achieving better operating points
in the tradeoff between total transmit rate and distortions at the de-
coders. Experimental results for the practically important Laplacian
sources, validate the superiority of the proposed approach.
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