
ASYMPTOTIC CLOSED-LOOP DESIGN FOR TRANSFORM DOMAIN TEMPORAL
PREDICTION

Shunyao Li, Tejaswi Nanjundaswamy, Yue Chen, Kenneth Rose

Department of Electrical and Computer Engineering, University of California Santa Barbara, CA 93106
E-mail: {shunyao li,tejaswi,yuechen,rose}@ece.ucsb.edu

ABSTRACT

Current video coders exploit temporal dependencies via prediction
that consists of motion-compensated pixel copying operations. Such
per-pixel temporal prediction ignores important underlying spatial
correlations, as well as considerable variations in temporal corre-
lation across frequency components. In the transform domain, how-
ever, spatial decorrelation is first achieved, allowing for the true tem-
poral correlation at each frequency to emerge and be properly ac-
counted for, with particular impact at high frequencies, whose lower
correlation is otherwise masked by the dominant low frequencies.
This paper focuses on effective design of transform domain tempo-
ral prediction that: i) fully accounts for the effects of sub-pixel in-
terpolation filters, and ii) circumvents the challenge of catastrophic
design instability due to quantization error propagation through the
prediction loop. We design predictors conditioned on frequency and
sub-pixel position, employing an iterative open-loop (hence stable)
design procedure that, on convergence, approximates closed-loop
operation. Experimental results validate the effectiveness of both the
asymptotic closed-loop design procedure and the transform-domain
temporal prediction paradigm, with significant and consistent per-
formance gains over the standard.

Index Terms— Temporal prediction, motion compensation,
sub-pixel interpolation, DCT, video coding

1. INTRODUCTION

Modern video coding standards, such as HEVC, exploit the inherent
temporal dependencies in a video sequence via inter prediction [1].
Instead of directly encoding the raw pixel values for each block, the
encoder predicts them from a similar reference block in previously
reconstructed frames through pixel domain block matching. The pre-
diction error is then transformed, typically by the discrete cosine
transform (DCT), and the transform coefficients are quantized and
coded. While a considerable amount of research has been focused
on the accuracy of motion compensation, including motion vector
estimation (e.g., [2, 3, 4]), and variable block sizes (e.g., [5, 6]),
very few questions have been raised about the limitations of pixel
domain block matching and copying.

In most video sequences, each pixel is highly correlated with its
neighbors, thus a given pixel in the current block is correlated with
a group of pixels in the reference block. This implies that the con-
ventional one-to-one pixel-copying approach is suboptimal. Some
multi-tap filtering approaches [7, 8, 9] and motion-compensated
three-dimensional subband coding approaches [10, 11] have been
proposed to account for such spatial correlations. However, a more
effective approach to model complex spatio-temporal correlation is
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via DCT-domain temporal prediction, where spatial decorrelation is
(largely) achieved first and allows for optimality of subsequent one-
to-one transform coefficient prediction. Moreover, while the pixel
domain correlation coefficient ρ is typically close to 1, transform co-
efficients exhibit temporal correlation that varies considerably with
frequency, as illustrated in Fig. 1 for an example block. In Fig. 1(a)
we observe that the reference block and the original block look very
similar in the pixel domain, and this is roughly true for the lower fre-
quency DCT coefficients, yielding ρ values close to 1. However, the
similarity tends to break down for higher frequency coefficients with
consequently decreasing ρ values, as illustrated in Fig. 1(b). Clearly,
this variation in correlation across frequencies is masked in the pixel
domain by the dominant low frequencies, and the resulting ρ ≈ 1
led to the prevalence of block matching and copying techniques in
current coders. Thus, the advantages of transform domain tempo-
ral prediction (TDTP) can be viewed from two perspectives: i) an
effective paradigm to disentangle spatial and temporal correlations
allowing for optimal prediction, and ii) a means to make explicit,
and hence properly account for, the variation in temporal correlation
across frequency, which is otherwise hidden in the pixel domain.

The significant potential of TDTP was recognized in an earlier
paper from our group [12] where a TDTP approach was proposed
in conjunction with full-pixel motion, with coefficients trained from
original video sequences, which yielded substantial coding gains. It
was then extended in [13] to update coefficients along the motion tra-
jectory using a backward spatially adaptive approach. In this paper,
we return to forward adaptive prediction with focus on the two-fold
challenge of effective offline predictor design for TDTP at sub-pixel
motion compensation. First, sub-pixel interpolation employs low-
pass filters, which implies that high frequencies are scaled down, as
suggested by the filter’s magnitude response. It should be empha-
sized that the preceding statement applies to the Fourier transform
domain and we are concerned with the effect on DCT coefficients.
Nevertheless, it is clear that the interpolation filter interferes with
TDTP, and thus needs to be properly accounted for during the predic-
tor design. Since every sub-pixel location incurs a different but fixed
combination of vertical and horizontal sub-pixel interpolation filters,
we propose to train predictors conditioned on the sub-pixel location.
The second, and critical challenge, is instability of the predictor de-
sign due to quantization error propagation in closed-loop operation.
If the prediction parameters are modified during the design, to match
the statistics observed in a pass through a sequence with its corre-
sponding reconstructed reference frames, they will then be employed
in the next pass. But each consecutive frame is now predicted from
a differently reconstructed reference, resulting in prediction statis-
tics incompatible with the designed parameters and, moreover, with
such deviation in statistics potentially growing in magnitude as the
coder advances through the sequence, as the quality of actual pre-
diction impacts the quality of reconstruction and thereby the next
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(a) Reference block and original block
in pixel and DCT domain

(b) Transform prediction coefficients
for 8x8 DCT coefficients for mobile sequence at QP=22

Fig. 1. An illustration of difference in correlations between pixel
domain and DCT domain

frame’s prediction, and so on. We address this issue by employ-
ing an iterative open-loop design technique, leveraging inspiration
from an early paper from our lab on the design of vector quantizers
in a predictive coding setting [14]. Here, a complete sequence of
reconstructed frames from the previous iteration provides reference
frames to predict a sequence of frames in the current iteration, with
prediction parameters designed for exactly this sequence of refer-
ence frames. The coder then produces a sequence of reconstructions
which is now fixed as sequence of reference frames for the next iter-
ation, and the prediction parameters are updated. This ensures there
is no incompatibility between design and deployment. As the recon-
structed sequences converge, the above open-loop prediction effec-
tively becomes stable closed-loop prediction. Hence, we call this the
asymptotic closed-loop (ACL) design technique. Simulation results
provide evidence of significant coding gains over standard HEVC.

2. PREDICTION MODEL

Conventional motion-compensated prediction assumes that pixels
along a motion trajectory form a temporal first-order AR process,
neglecting all the spatial correlation. Instead we operate in the DCT
domain, where spatial decorrelation has been achieved, and assume
that frequency coefficients of blocks along a motion trajectory form

a first-order AR process per frequency. Let’s denote by xn a DCT
coefficient at a particular frequency of an inter-coded block in frame
n, and by xn−1 the corresponding DCT coefficient of its motion
compensated reference block in frame (n− 1), then the AR process
is given as,

xn = ρxn−1 + zn (1)

where ρ is the transform domain correlation coefficient, which cap-
tures the temporal dependency of transform coefficients at a given
frequency along the motion trajectory, and zn is the innovation.
Without loss of generality, we assume that the motion compensated
reference block is in the immediately previous frame. We need
closed-loop prediction so that the decoder can exactly mimic the
encoder, so we use the reconstructed DCT coefficient, x̂n−1, as a
reference. Thus the optimal prediction for each frequency coefficient
is

x̃n = ρx̂n−1, (2)

with ρ now the corresponding correlation coefficient. We note that
the conventional pixel domain block matching and copying is equiv-
alent to employing ρ = 1 at all frequencies. We estimate ρ to mini-
mize the mean square prediction error,

J = E((xn − ρx̂n−1)
2). (3)

The optimal prediction coefficient ρ is

ρ =
E(xnx̂n−1)

E(x̂2n−1)
, (4)

which forms the basis of the off-line design technique described be-
low.

3. OFFLINE ASYMPTOTIC CLOSED-LOOP DESIGN

The closed-loop operation causes instability of the predictor design
due to quantization error propagation. Let’s denote a sequence of
DCT coefficients at a certain frequency for blocks along the motion
trajectory as, x1, x2, . . . , xN . The first frame is intra coded so we
have the first reconstructed coefficient x̂1. As discussed earlier the
current temporal prediction is equivalent to predicting in transform
domain with ρ = 1 at all frequencies. Thus the predicted coeffi-
cient in frame 2 is, x̃2 = x̂1, the prediction error, e2 = x2 − x̃2,
is quantized to generate ê2, and the final reconstructed coefficient is
x̂2 = ê2 + x̃2. Similarly, the reconstruction of frame 3 is gener-
ated using x̂2, and so forth. This closed-loop encoder system can be
summarized as

x̂n = x̂n−1 + ên (5)

Using these samples as a reference, we can get a first estimate of the
prediction coefficient as,

ρ1 =
E(xnx̂n−1)

E(x̂2n−1)
, (6)

which works well for this set of reconstructed samples as reference.
On using this prediction coefficient in the coder, first reconstructed
coefficient, x̂1 is unaltered as it is intra coded. However, for the
coefficient in frame 2, we generate a new prediction, x̃′2 = ρ1x̂1,
and the corresponding new prediction error, e′2 = x2 − x̃′2, is quan-
tized to generate ê′2, which is used to generate the new reconstruction
x̂′2 = ê′2 + x̃′2. In a closed loop operation, mimicking (5), frame 3 is
generated using this new reconstruction x̂′2. Clearly, the correlation
between x̂′2 and x3 is different from what the prediction coefficient
ρ1 was designed for (i.e., correlation between x̂2 and x3), leading
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Fig. 2. Asymptotic Closed-Loop (ACL) training approach

to ineffective prediction. Moreover, this may result in “build up” of
deviation in statistics, as we proceed to future frames. This instabil-
ity problem is particularly serious at low bitrates, where the residual
is not well encoded and the reconstruction is more dependent on the
prediction quality.

To address this instability problem, we propose an iterative
open-loop design technique that asymptotically optimizes the sys-
tem for closed-loop operation, similar to the asymptotic closed-loop
(ACL) approach previously proposed by our lab [14] for an insta-
bility problem in predictive vector quantizer design. We use double
subscripts, e.g., xn,t to indicate variables from frame n and iteration
t. The basic idea of ACL is to employ open-loop prediction to avoid
the instability problem of closed-loop prediction, while updating
the prediction parameters in each iteration. Once the parameters
converge, it becomes equivalent to closed-loop operation. Given a
set of reconstructed coefficients along a motion trajectory for a fre-
quency at iteration t − 1, x̂1,t−1, x̂2,t−1, . . . , x̂N,t−1, we estimate
the prediction coefficient for iteration t as,

ρt =
E(xnx̂n−1,t−1)

E(x̂2n−1,t−1)
. (7)

This ρt is employed in open-loop to predict coefficients in frame n
of iteration t, x̃n,t = ρtx̂n−1,t−1. So instead of (5) where all the
samples are of the same iteration, the reconstruction in this open-
loop scheme is given as,

x̂n,t = ρtx̂n−1,t−1 + ên,t, (8)

where ên,t is the quantized prediction error, en,t = xn − x̃n,t.
Clearly, there is no instability problem here, as ρt is directly op-
timized for the correlation between x̂n−1,t−1 and xn. Since the
prediction coefficients are specifically designed to be optimal for
the statistics they are applied to at each iteration, the prediction is
guaranteed to improve. Better prediction (usually) leads to better re-
construction, and vice versa. The reconstruction error is generally
decreasing and would approach convergence. On convergence, the
reconstruction remains the same, i.e., x̂n−1,t−1 = x̂n−1,t, which
makes it equivalent to the closed-loop system, i.e.,

x̂n,t = ρtx̂n−1,t + ên,t, (9)

and the prediction coefficients converge as well, i.e., ρt+1 = ρt. An
illustration of ACL is provided in Fig. 2.

If the motion vectors and other encoder decisions for quanti-
zation and entropy coding are fixed, then we can employ the ACL
scheme described above to estimate optimal prediction coefficients.
However, motion vectors, quantization, and entropy coding deci-
sions are dependent on the prediction coefficients. Thus, we pro-
pose a two-loop design scheme for prediction coefficients. In the

inner loop, we estimate prediction coefficients via ACL while fix-
ing the motion vectors and other encoder decisions for quantization
and entropy coding such as prediction type and merge/skip flag. In
practical implementation, to keep the design complexity in check,
instead of waiting for full ACL convergence, we stop the inner loop
when the prediction error energy, E(e2n,t), no longer decreases sig-
nificantly. The encoder decisions are updated in the outer loop, while
using the prediction coefficients estimated in the inner loop. The
outer-loop decisions are updated in the closed-loop operation of the
encoder to minimize the rate-distortion (RD) cost. The outer-loop
is stopped when inner-loop converges quickly, as we observed that
further outer-loop iterations did not help.

Since prediction coefficients are trained using reconstructed ref-
erence samples, their statistics change based on encoding quality.
Thus we design and employ different set of prediction coefficients
for different quantization parameters (QP) of the encoder. The train-
ing is done via the two-loop method described above, while operat-
ing the encoder in a constant QP mode. Also as discussed earlier, the
interpolation filter interferes with the prediction coefficients, thus to
account for different interpolation effect at each sub-pixel location,
we design and employ different prediction coefficients for each sub-
pixel location, e.g., at half pixel precision, we have 4 sets of coef-
ficients, 1 for full-pixel location and 3 others for sub-pixel location.
Further, at low bitrates, the encoder opts to encode vast majority of
blocks via skip mode, where prediction error of all DCT coefficients
is quantized to 0. For these blocks, the overall reconstruction error
is same as the prediction error. However, for regular blocks, when a
fixed quantizer is used (i.e., under constant QP operation) the over-
all reconstruction error does not vary much. Clearly, the stability of
reconstructed data varies between these two modes during the ACL
design. Thus, to exploit this difference effectively, we design and
employ different set of prediction coefficients for these two modes.
For further effectiveness of the prediction, we updated the motion es-
timation criteria to minimize the transform domain prediction error,
which is in sync with the prediction design criteria.

The basic assumption for convergence that better prediction and
better reconstruction are mutually supportive is not always guaran-
teed. For real world sequences we observe that the prediction error
cost decreases initially and then hits a limit cycle. Thus we sim-
ply stop the inner loop iterations when this cost stops decreasing,
and still achieve significant performance improvements. Moreover,
while the inner-loop iterations minimize the mean squared prediction
error, the encoder decisions in the outer loop are updated to mini-
mize the RD cost. This mismatch in the optimization criteria does
not ensure full convergence in the outer loop, and hence we stop the
outer loop when the inner loop converges quickly. Resolving this
mismatch in optimization criteria and optimizing the prediction co-
efficients for the overall RD cost in both loops will be one of our
future research directions.

4. EXPERIMENTAL RESULTS

The proposed TDTP is implemented in HM 14.0, and compared
with standard HEVC. To simplify the experiments, all sequences are
coded in format IPPP (although the method is applicable to bidi-
rectional prediction), sample adaptive offset (SAO) function option
is disabled, both prediction size and transform size are restricted to
8x8, and the motion search is at half-pixel precision. As mentioned
earlier the motion search criterion is the mean squared transform do-
main prediction error instead of 1-norm (SAD).

Two experiments were conducted to validate the efficacy of
TDTP for different application scenarios. In experiment 1, we target
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Fig. 3. Coding performance comparison for sequence bus at CIF
resolution

Sequence
Bit rate

reduction (%)
(Experiment 1)

Bit rate
reduction (%)

(Experiment 2)
BQTerrace 12.88 10.23

BasketballDrive 6.21 5.36
Kimono 7.88 4.53

ParkScene 7.41 7.00
Keiba 5.38 5.17

RaceHorse 3.44 3.03
Waterfall 9.29 4.38
Vidyo1 5.75 4.56

Bus 5.59 5.37
Tennis 2.23 1.50

Tempete 5.56 5.30
FourPeople 6.81 3.04

Average 6.53 4.96

Table 1. Reduction in bitrate over reference encoder by employing
TDTP.

video storage applications where encoding is performed off-line,
and design a specific set of coefficients for each sequence using
the training method described above, to exploit the full potential of
TDTP. The overhead of storing a set of coefficients per sequence
is negligible. The percentage bitrate reduction (calculated as per
[15]) achieved by TDTP over standard HEVC encoder is a signif-
icant 6.53% on the average. Individual bitrate reductions for 12
sequences is presented in the first column of Table 1. In experiment
2, we evaluate performance outside the training set, by providing
a choice of fixed 8 sets of prediction coefficients (including all 1
coefficients, i.e. no transform prediction) at the encoder. These
choices are provided to cover varying statistics in video content
and are obtained using a small set of training sequences different
from the test set. The overhead here is a mere 3 bits per sequence.
The performance gains for experiment 2 is presented in the second
column of Table 1. The difference in gains between column 1 and
column 2 suggests further scope for improving sequence and frame
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Fig. 4. Coding performance comparison for sequence ParkScene at
1080p resolution

wise adaptivity and will be one of our future research directions.
The RD curves for sequence bus and ParkScene are shown in Fig. 3
and Fig. 4 with performance comparison to employing prediction
coefficients trained without the ACL technique. Note that at low
bitrates, training without ACL suffers greatly from the instability
problem, resulting in worse performance than the standard, while the
training with ACL has no such issues, clearly providing substantial
evidence for the effectiveness of our proposed technique.

5. CONCLUSION

This paper substantially extends the transform domain motion com-
pensated prediction approach for video coding, so as to account for
spatial correlations during temporal prediction, and the true temporal
correlations in the AR process at different spatial frequencies along
motion trajectories. A novel design scheme for prediction coeffi-
cients is proposed to account for the sub-pixel interpolation filter and
the effect of quantization error propagation in the prediction loop. A
two-loop training method is applied, wherein an iterative open-loop
design technique is employed to address a major instability problem
of closed-loop design. The overall system provides substantial gains
compared to standard HEVC, providing evidence for the effective-
ness of the proposed technique.
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