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Abstract

We present a method for object tracking over time
sequence imagery. The image plane is represented with
a 4-connected planar graph where vertices are asso-
ciated with pixels. On each image, the outer contour
of the object is localized by finding the optimal cycle
in the graph such that a cost function based on tempo-
ral, appearance and shape priors is minimized. Our
contribution is the particle filtering-based framework
to integrate the shape cue with the temporal and ap-
pearance cues. We demonstrate that incorporating the
shape prior yields promising performance improvement
over temporal and appearance priors on various object
tracking scenarios.

1. Introduction

Object tracking in image sequences is an active area
of research in computer vision [10]. A majority of
current tracking methods can be categorized into three
groups: active contours methods, kernel methods and
graph theory methods. In this work, we are particularly
interested in the graph-based approaches since, under
certain assumptions, they are able to provide globally
optimal solutions in polynomial time.

In graph-based tracking methods, the image plane is
represented with a graph where the vertices are associ-
ated with the pixels. Accordingly, the edges between
each vertex and its immediate 4 (or 8) neighbors are de-
signed to capture spatial dependencies between pixels.
In this representation, tracking problem can be re-stated
as finding the optimal labeling configuration where each
vertex is labeled with either 0 (background) or 1 (ob-
ject). Graph-cuts [2] provide an efficient solution to
this label assignment problem with the energy function
adopted from pairwise Markov random fields (MRF).
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In typical object tracking applications, the object can
be represented with a single connected blob. However,
graph-cuts do not make use of this important domain
specific knowledge. In fact, including this constraint in
the graph-cuts is NP-hard [9].

Alternatively, one can represent the object contour
with a cycle in the graph. In this representation, non-
self-intersecting cycles always yield a single connected
blob. Furthermore, polynomial time algorithms exist
to find optimal cycles in the graph [3]. In these algo-
rithms, each edge has two weights and the target en-
ergy function is defined based on ratio of these weights
on the cycle. The appearance cues are transformed to
edge weights with the use of Green’s theorem [4, 5].
The shape cues are also integrated in this framework
using auxiliary vertices [8]. However, to the best of our
knowledge there is no prior work which integrates both
shape and the region-based appearance cues within the
ratio cycle framework.

In this paper, we present a ratio cycle-based tracking
framework which integrates both shape and the region-
based appearance. The appearance is represented with
color and edge cues. Shape cue is introduced based on a
template shape which captures rigid transformation in-
cluding translation, scale, rotation and shear. The tem-
poral information is probabilistically integrated within
the proposed framework through state-space filtering.

The organization of this paper is as follows. In Sec-
tion 2 we provide technical explanation of the proposed
method. The experimental results are given in Sec-
tion 3. Finally, we conclude and discuss future direc-
tions in Section 4.

2. Method

Consider an image I(x, y) with dimensions X × Y
where X is the width and the Y is the height. We repre-
sent this image with a planar graph G = {V,E}, where
V = {vx,y} is the set of vertices with (X+1)×(Y +1)
elements. The vertices are located at the corners of
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Figure 1. Representation of the image
with the graph G.

the pixels such that the node at the upper left corner
of the pixel I(x, y) is vx,y . The set of edges E =
{e(vx,y, vx′,y′)} are defined between 4 neighbors of
each vertex.

In this graph, we also define a cycle C as a closed
directed path, with no repeated vertices. The set of all
cycles in G is denoted with C. Given two weights, w(e)
and τ(e) ≥ 0, associated with each edge e, the task is
to find the cycle C∗ that maximizes the following:

C∗ = argmax
C∈C

∑
e∈C

w(e)∑
e∈C

τ(e)
. (1)

This maximization problem can be solved using
Howard’s iteration policy algorithm [3] with empirical
time complexity O(|E|).

2.1 Cost Function

Let PI,S(x, y) be the posterior probability of label-
ing the pixel at (x, y) with object label O:

PI,S(x, y) = P (L(x, y) = O|I(x, y), S) (2)

Here, I(x, y) is the image intensity/color value at (x, y)
and S is the shape prior. We assume that PI,S(x, y) can
be approximated with the weighted sum rule [6]:

PI,S(x, y) ≈ α

PI(x,y)︷ ︸︸ ︷
P (L(x, y) = O|I(x, y))

+ (1− α)P (L(x, y) = O|S)︸ ︷︷ ︸
PS(x,y)

.
(3)

The tracking is performed by finding the 8-connected
region that maximizes a function of these probabili-
ties for the pixels within the region. This function is
designed in the form of (1) where w(vx,y, vx′,y′) and
τ(vx,y, vx′,y′) weights are set based on (3). By doing
this, the idea is to relate the optimum blob in the image
and the optimum cycle in G.

The numerator is designed such that it reflects the
sum of PI,S(x, y) within the area surrounded by that
cycle. Accordingly, the cycles favor to capture the re-
gions with high PI,S(x, y). The area integration within
the cycle is converted to line integration on the cycle
using Green’s theorem. In this way, integration of the
PI,S(x, y) values over a region is performed efficiently
by summing the edge weights around that region. Ac-
cordingly, one can derive the values of w(vx,y, vx′,y′)
as:

w(vx,y, vx′,y′) =


0 y = y′∑x
δ=1 PI,S(δ, y′) y = y′ + 1

−
∑x
δ=1 PI,S(δ, y) y = y′ − 1.

(4)
The denominator weights τ(vx,y, vx′,y′) are set such
that the cycles favor discontinues in PI,S :

τ(vx,y, vx′,y′) ={
1

ατ+(PI,S(xm,y−1)−PI,S(xm,y))2
y = y′

1
ατ+(PI,S(x−1,ym)−PI,S(x,ym))2 x = x′

(5)

where, xm and ym are min(x, x′) and min(y, y′), re-
spectively. In this equation, ατ adjusts the edge sensi-
tivity. Larger ατ values make the system less sensitive
to the edges. In our experiments we empirically set it to
0.01.

2.2 Shape and Temporal Priors

The shape prior is represented with a single binary
image, S(x, y), which contains the silhouette of the ob-
ject. The temporal prior is represented with the position
(x, y), scale (sx, sy) and rotation θ of the object. The
temporal prior, t = [x, y, sx, sy, θ]T , is propagated in
time using particle filtering [1] technique. In the par-
ticle filtering, the conditional density of t is modeled
with a set of particles Tp = {tp,i} in tp ∈ R5 and
propagated over time with re-sampling. The shape and
the temporal priors are coupled to obtain PS(x, y):

PS(x, y) =P (L(x, y) = O|S, t)
=S(x′, y′)

(6)

where, (x′, y′) is obtained by warping (x, y) from the I
back to S using the transformation t. Accordingly, for a



Figure 2. Sample tracking output. The
maximum ratio-cycle is shown in green.
The shape priors associated with 50 par-
ticles are shown in blue.

given S, each t deforms S to the image domain and re-
sults in a hypothetical PS(x, y). Given the set of all hy-
potheses, the task is to find the one that maximizes the
cycle ratio (1). However, it is computationally infeasi-
ble to try all possible t ∈ R5. Alternatively, one can ob-
tain an approximate solution by properly sampling the
set of all hypotheses based on the temporal information.
For this purpose, the particle filtering provides an effec-
tive way to generate these random samples tp from the
estimated distribution of t. In this way, only the rele-
vant subspace of R5 is searched with remarkably less
number of hypotheses. In our experiments, we observe
that 50− 500 samples are sufficient for object tracking.

Accordingly, for a given S, the optimal cycle is ob-
tained by maximizing (1) over the samples {tp}:

C∗ = max
tp∈Tp

argmax
C∈C

∑
e∈C

w(e|S, tp)∑
e∈C

τ(e|S, tp)
. (7)

Note that, each S and tp results in a new set of edge
weights. Therefore, we represent this dependency with
w(e|S, tp) and τ(e|S, tp).

3. Experimental Results

In this section, we demonstrate the performance of
the proposed framework on three different object track-
ing scenarios. The tracking performance is measured
based on the F-measure. Let Ro and Rg be the output
and the ground truth regions, respectively. The preci-
sion, P and recallR is measured as:

P =
|Ro ∩Rg|
|Ro|

, R =
|Ro ∩Rg|
|Rg|

. (8)

Figure 3. Tracking output on car se-
quence.

Finally, the F-measure is obtained by 2PR/(P +R).
In all scenarios, the foreground and background

models are obtained using manual segmentation on few
frames. In the first scenario, we consider car track-
ing 1. In this image sequence, the viewpoint changes
with respect to the car which makes it hard to model
with rigid deformations. However, in our framework,
the optimal cycle can still deviate from the rigid trans-
formation to match the image observations. Therefore,
slight non-rigid deformations are still captured prop-
erly as illustrated in Fig. 3. In the second scenario,
the object of interest is the mushroom toy (See Fig 4)
and the main challenge is the additive color noise with
(µ = 0, σ = 25). Although the color noise affects the
PI(x, y) drastically, shape prior helps to locate the ob-
ject properly. The third scenario includes artificially oc-
cluded lamp object. In this case, the advantage of shape
prior completes the missing parts perfectly (See Fig 5).
The results on these sequences are summarized in Ta-
ble 1 where we also present the results without using
the shape prior. The advantage of using the shape prior
is clearly visible in all scenarios. The tracking videos
can be found in [7].

4. Conclusions and Future Work

We presented a method for integrating both shape
and region-based appearance cues within the ratio-cycle
optimization framework. The experiments showed
promising results on tracking an object of known shape.
Although the optimal cycles can handle limited non-

1The image sequence is taken from PETS 2000 dataset
(http://www.cvg.rdg.ac.uk/slides/pets.html).



Sequence Shape Prior Frames Average1 5 15 25 35 45 50

car w/o Shape Prior 0.93 0.93 0.92 0.85 0.81 0.87 0.89 0.89
Shape Prior 0.96 0.94 0.91 0.91 0.90 0.90 0.91 0.92

mushroom w/o Shape Prior 0.92 0.91 0.90 0.95 0.74 0.73 0.73 0.84
Shape Prior 0.95 0.94 0.96 0.96 0.94 0.97 0.96 0.95

lamp w/o Shape Prior 0.69 0.69 0.43 0.27 0.54 0.85 0.91 0.63
Shape Prior 0.98 0.95 0.95 0.94 0.97 0.96 0.95 0.96

Table 1. F-measures on three sequences.

Figure 4. Tracking output on mushroom se-
quence.

Figure 5. Tracking output on lamp se-
quence.

rigid deformations, we considered the rigid deforma-
tions of the shape prior. This limitation can be improved
in future by using a non-rigid deformation model such
as thin-plate splines.
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