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Abstract.
The design of nearest-prototype (NP) classifiers is a challenging prob-

lem because of the prevalence of poor local minima, and the piecewise
constant nature of the cost function which is incompatible with gradient-
based techniques. This paper extends the deterministic annealing (DA)
method for NP-classifier design in two ways. First, the association be-
tween prototypes and class labels is also randomized, and the corre-
sponding association probabilities are added to the set of parameters
to be optimized. Second, the multiplicity (or the mass) of prototypes
are optimized. During the design, all parameters are optimized so as
to minimize the expected misclassification rate for a given level of ran-
domness. The joint entropy, which measures the level of randomness,
is gradually reduced while optimizing the cost Lagrangian. As the en-
tropy approaches zero, the method seeks a deterministic classifier that
minimizes the rate of misclassification.

INTRODUCTION

The nearest-prototype (NP) classifier is an efficient tool for classifying data,
that has the capability of implementing nonconvex or even disconnected par-
titions which are determined by a small number of parameters, namely, the
prototype locations. Moreover, although the NP-classifier decision regions are
restricted to be unions of Voronoi cells, any classifier can be approximated
by NP-classifiers, with a sufficient number of prototypes.
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A known difficulty with the design of NP classifiers is that the optimal
labeling, or allocation of prototypes to classes, is not known a priori. In prac-
tice, the allocation is made in a heuristic fashion. For example, prototype
labels may be distributed among classes uniformly, or according to the class
label distribution in the training set. Such heuristic initialization often re-
sults in suboptimal distribution of prototypes and compromises the ultimate
performance. Known algorithms, such as the learning vector quantizer (LVQ)
design [1], as well as the existing deterministic annealing (DA) approach [2],
suffer from this weakness.

In this paper, this problem is tackled by a significant extension of the
DA algorithm of [2], which itself builds on the DA approach to clustering [3]
(see also [4] for a tutorial). In the DA algorithm proposed here, the classifier
randomization is extended to include the assignment of labels to prototypes.
In other words, each prototype is assigned to a class label in probability. The
randomness is controlled by monitoring the joint entropy of the system.

NP CLASSIFIER FORMULATION AND DESIGN

In general, a classifier is defined [5] as a mapping C : Rm → K, where Rm is
the feature space and K is any index set of labels. It induces a partitioning
of the feature space into regions Rk ≡ {x ∈ Rm : C(x) = k}, where

⋃
k Rk ≡

Rm and
⋂

k Rk ≡ ∅.

NP Classification

A nearest-prototype classifier is a composite mapping C = Q ◦ V where V :
Rm → J is the partitioning function and Q : J → K is the labeling function,
and where J is an intermediate (prototype) index set. The partition function
is

V (x) = argmin
j∈J

{d(x, sj)} , (1)

where, S = {sj : j ∈ J } is the set of prototypes and d(·, ·) is any appropri-
ately defined distance or distortion measure on Rm. Each vector x ∈ Rm is
first mapped to the nearest prototype sV (x), and then classified to the corre-
sponding label by Q(·). Accordingly, each classifier region Rk is the union of
Voronoi cells:

Rk ≡
⋃

j:Q(j)=k

Vj with

Vj ≡ {x ∈ Rm : V (x) = j} . (2)

Let T = {(xn, cn)} be a training set of N pairs of vectors consisting of
xn ∈ Rm and corresponding class labels cn ∈ K. The performance of a



classifier C is measured by the empirical error rate

Pe(C) =
1
N

N∑
n=1

ρ(cn, C(xn)) , (3)

where ρ(cn, k) = 1 if cn 6= k and 0 otherwise. For reasons that will soon
become obvious, it is more convenient to rewrite Pe(C) as

Pe(C) =
1
N

∑
n

∑
j∈J

∑
k∈K

vnjqjkρ(cn, k) , (4)

where

vnj =
{

1 if V (xn) = j ,
0 otherwise .

qjk =
{

1 if Q(j) = k ,
0 otherwise .

(5)

Design with Deterministic Annealing

In the DA approach for NP-classifier design [2], Q(·) was fixed as a determin-
istic mapping, and the mapping V (·) was randomized. In other words, points
in the feature space Rm were assigned to prototypes in probability during the
design phase. More specifically,

P [xn ∈ Vj ] =
e−γd(xn,sj)∑
i e−γd(xn,si)

, (6)

where γ is a parameter governing the “peakiness” of the distribution. The
classifier output was declared as the fixed-label of the chosen prototype. A
“randomness level” of V (·), measured by the Shannon entropy

H = − 1
N

∑
n

∑
j∈J

P [xn ∈ Vj ] log P [xn ∈ Vj ] , (7)

was imposed on the solution, and this level was gradually decreased. At the
limit of zero entropy, a “hard” classifier is obtained, in which case γ → ∞,
and hence V (·) goes to (1). At each intermediate level of randomness, the
objective was to minimize the misclassification rate over the training set,
which can still be expressed as in (4) with the modification vnj = P [xn ∈
Vj ], subject to the entropy constraint. From a different perspective, the
same objective could be stated as “to maximize the entropy while gradually
lowering the level of misclassification rate.”

It was shown [2] with several synthetic and “real-world” examples that the
fixed-label DA algorithm outperforms LVQ-based classification [1]. However,
the open question of how Q(·) should be fixed, i.e., how many prototypes
should be associated with each class, remained unresolved. In fact, there is



no analytical way to determine the optimum Q(·) prior to the actual classifier
design. There are several known ad hoc ways, such as distributing the pro-
totype labels among classes uniformly, or according to the frequency of the
class labels in the training set. Each of these heuristics has its limitations.
We next propose a remedy for this shortcoming.

Random-label DA

We proceed to randomize Q(·) as well. We redefine qjk as the probability that
prototype j belongs to class k, so that the misclassification rate is still given
by (4). However, if we reinterpret the meaning of J as the index set for
distinct prototypes, and denote the number of identical prototypes located
at a distinct position by λj , the overall misclassification rate becomes

Pe(C) =
1
N

∑
n

∑
j∈J

∑
k∈K

λjvnjqjkρ(cn, k) . (8)

We also optimize λj as done for clustering in [6] and [4], to obtain the
correct multiplicity at each distinct prototype. We do not require λj to be
an integer, so it may be viewed as the mass of prototype sj , where the total
mass to be distributed among prototypes is M .

The randomized composite mapping C = Q(V (·)) is in fact a two-stage
Markov chain, whose overall entropy is

H = − 1
N

∑
n

∑
j∈J

∑
k∈K

λjvnjqjk log (vnjqjk)

= − 1
N

∑
n

∑
j∈J

λjvnj log vnj −
1
N

∑
n

∑
j∈J

∑
k∈K

λjvnjqjk log qjk . (9)

With this modification we follow a derivation similar to that of [2], and
consider the expected structural cost induced by this random partitioning of
the feature space:

D =
1
N

∑
n

∑
j∈J

λjvnjd(xn, sj) . (10)

Our objective is to minimize the misclassification rate (8) where H = H∗ is
given as a constraint. So an equivalent objective is the following:

Minimize L = βPe − H

with respect to γ, sj, λj , and qjk

subject to
∑
k∈K

qjk = 1 , ∀j ∈ J

∑
j∈J

λj = M

vnj =
e−γd(xn,sj)∑

i∈J λje−γd(xn,si)
, (11)



where β is the “reciprocal temperature” controlling the joint entropy level.
Initially β = 0, in which case the sole objective becomes the maximization
of the joint entropy, which is achieved by γ = 0 and an arbitrary set of
identical prototypes. When β → ∞, the objective becomes the minimization
of the misclassification rate, which is, of course, our ultimate objective. This
minimum is achieved only by H = 0, i.e., γ → ∞ and all prototypes are
distinct. It is easy to see from (11), that in this case the classifier is a hard
NP-classifier. When β is gradually increased from 0 to ∞, the prototypes
undergo a sequence of prototype splits, or bifurcations, which correspond to
phase transitions in the statistical physics analogy. One significant problem
with the above formulation as it stands is that it allows too much freedom
in the location of prototypes until β reaches the critical value for the second
phase transition. To be more specific,

• When 0 ≤ β < β1, that is, before the first phase transition, any set of
identical prototypes will minimize the cost function.

• When β1 ≤ β < β2, that is, between the first and second phase transi-
tions, the line on which the two sets of prototypes should be is unique,
but the distance between the prototypes and the value of γ still main-
tain a degree of freedom. It is possible to increase one and decrease the
other without changing the value of the Lagrangian cost function.

The excessive freedom is very undesirable and increases the likelihood of
trapping the algorithm in a poor local minimum. Instead, we propose a
regularized objective, namely

Minimize L = βPe + γD − H

with respect to γ, sj, λj , and qjk

subject to
∑
k∈K

qjk = 1 , ∀j ∈ J

∑
j∈J

λj = M

vnj =
e−γd(xn,sj)∑

i∈J λje−γd(xn,si)
. (12)

It can be shown that as β → ∞, not only γ → ∞, but also γ
β → 0, which

is consistent with the original aim of minimizing the misclassification rate
Pe. The excessive degrees of freedom are eliminated by the addition of the
expected structural cost term. For example, when β = 0, the set of identical
prototypes must be at the global centroid of the training set T (assuming
the squared-distance measure d(x, y) = ||x − y||2.)

The objective (12) is a convex optimization problem in terms of qjk. So
the solution for qjk is analytically found as

qjk =
e−βDjk∑
m e−βDjm

, (13)



where

Djk =
∑

n vnjρ(cn, k)∑
n vnj

, (14)

which is easily interpreted as the expected misclassification rate given that
prototype sj is associated with class label k. Substituting qjk back in the
Lagrangian of (12), we obtain

L = −
∑

n

log (
∑
j∈J

λje
−γd(xn,sj)) −

∑
n

∑
j∈J

λjvnj log (
∑
k∈K

e−βDjk) , (15)

which is a natural generalization of the free energy (or strictly speaking the
potential) derived in [3] (and [6] with the mass constraint on codevectors) for
the case of clustering or vector quantization.

Necessary Conditions for Optimality

At each value of β, the solution of (15), i.e., the optimal locations of the
prototypes {sj}, their masses {λj}, and γ should satisfy

∇sj L = 0 = γ
∑

n

λjvnj∇sj d(xn, sj)(1 + Ln − Lnj) , (16)

and
∂L

∂γ
= 0 =

∑
n

∑
j∈J

λjvnjd(xn, sj)(1 + Ln − Lnj) , (17)

and
N

M
=

∑
n

vnj(1 + Ln − Lnj) , (18)

where

Lnj = β
∑
k∈K

qjk{ρ(cn, k) − Djk} − log (
∑
k∈K

e−βDjk) − log (
∑
i∈J

λie
−γd(xn,si))

(19)
and

Ln =
∑
i∈J

λivniLni . (20)

Note also that
L =

∑
n

∑
j∈J

λjvnjLnj =
∑

n

Ln . (21)

EXPERIMENTAL RESULTS

We performed experiments to compare the performances of the LVQ method
[1], the fixed-label DA method [2], and the proposed random-label DA method.
As a training set, we used the Finnish phoneme data set that accompanies



the standard LVQ software package. The training set consists of 1962 vec-
tors which represent 20-dimensional cepstral coefficients of the correspond-
ing phoneme uttered by the speaker. There are 20 classes (phonemes) in
the training set. The experiments comparing LVQ and the fixed-label DA
method have already appeared in [2]. In both LVQ and fixed-label DA ap-
proaches, the number of prototypes that are associated with a particular
class is proportional to the relative frequency of occurrence of that class in
the training set. The random-label DA algorithm, circumvents the need for
such an ad hoc decision.

M (# of prototypes) 20 30 40 50 80 100
Pe (LVQ) 13.25 12.44 11.47 10.96 10.09 8.17

Pe (fixed-label DA) 11.67 9.99 8.36 5.55 4.83 4.23
Pe (random-label DA) 7.65 7.18 6.88 5.86 4.63 4.17

Table 1: A comparison of Pe values (in percent) for the NP-classifiers designed
by LVQ, fixed-label DA, and random-label DA methods. The training set is the
20-dimensional, 20 class Finnish phoneme data set.

The experiments are performed using various values of total number of
prototypes. The results are presented in Table 1. As seen from the ta-
ble, in most cases, the random-label DA algorithm outperforms both the
fixed-label DA and the LVQ algorithms. The achieved performance gain is
more significant when the total number of prototypes is small. For exam-
ple, the 20-prototype classifier designed by the random-label DA method
is even better than the 40-prototype classifier designed by the fixed-label
DA, and 100-prototype classifier designed by LVQ. So, one can achieve ei-
ther substantially improved performance at the same classifier complexity,
or similar performance at substantially reduced complexity. Although it is
known that deterministic annealing methods avoid many poor local minima,
there is no guarantee of finding the global minimum. This is indeed the case
of 50 prototypes, where the fixed-label DA performs slightly better than the
random-label DA.

CONCLUSIONS

This paper presents an extension of fixed-label DA, where all mappings, in-
cluding the mapping from prototypes to class labels, are randomized, and
the level of randomness is measured by the joint entropy which is gradually
reduced to zero.

The results of the experiments on the Finnish phoneme set indicate that
further significant gains, in terms of better classification performance or re-
duced classifier complexity, are achieved by randomization and optimization
of the mapping Q(·) between the prototypes and the class labels.
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