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We consider N-layer scalable source coding of a finite mem-
oryless source X ∼ px. Let Xi denote X1, . . . , Xi, where Xi

is the reproduction at the ith layer. From [5], we know that a
scalable coder can achieve the sequence of decreasing distor-
tions D = {Di}N

i=1 and increasing rates R = {Ri}N
i=1, if and

only if there exists a conditional distribution QxN |x such that

E〈d(X, Xi)〉 ≤ Di i = 1, . . . , N
I(X;Xi) ≤ Ri i = 1, . . . , N .

The 2N-dimensional achievability region A is convex. Hence,
in order to find a point on the boundary of A with an inward
normal vector (α = {αi}N

i=1,β = {βi}N
i=1), we must solve the

following minimization problem:

Fα,β = inf
QxN |x

N∑

i=1

αiI(X;Xi) + βiE〈d(X, Xi)〉 .

The above problem was first addressed by Effros [4, Sec-
tion V]. A new system of equations and inequalities regarding
the optimal marginal qxN was formed, and all tentative solu-
tions (extracted from the equations) were tried until the one
satisfying the optimality conditions (the inequalities in the
system) was found. (See [1, Section 2.6] for the details of
the approach for the ordinary rate-distortion problem.) How-
ever, it was not clear how qxi+1|xi

should be defined when
qxi = 0. In fact, we showed that satisfaction of the condi-
tions given in [4] for some assumed qxi+1|xi

when qxi = 0,
does not necessarily imply the optimality of qxN . Moreover,
this approach becomes impractical as the size of the output
alphabet grows. (For an extreme example, consider contin-
uous source and reproduction alphabets.) As a remedy, we
propose an iterative algorithm which is a generalization of the
Blahut-Arimoto (BA) algorithm [2] for rate-distortion com-
putation. The algorithm is initialized with arbitrary nonzero
reproduction probabilities, and monotonically approaches the
optimal reproduction distribution. We also revise the optimal-
ity conditions to handle the complications that arise whenever
qxi = 0.

Let Q = {QxN |x} and q = {qxN } denote, in vector no-
tation, a random encoding, and a reproduction distribution,
respectively.
Lemma 1:

Fα,β = inf
Q

inf
q

Fα,β(Q,q) ,

where

Fα,β(Q, q)
4
=

N∑

i=1

βiEQ〈d(X, Xi)〉 + αiD(Qxi|xpx‖qxipx)
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Thus, the problem is that of double minimization and, as will
be shown, is solvable by alternating minimization.
Lemma 2:
a) Given Q, arg infq Fα,β(Q, q) is the marginal

qxN (Q) =
∑

x

pxQxN |x

b) Given q, arg infQ Fα,β(Q,q) is given by

QxN |x(q) =
qxN exp {−∑N

i=1
β′

idx,xi + α′
i log f i

x,xi
}

∑
zN

qzN exp {−∑N

i=1
β′

idx,zi + α′
i log f i

x,zi
}

,

where α′
i = αi/

∑N

j=i
αj and β′

i = βi/
∑N

j=i
αj , and

f i
x,xi

=
∑

zi+1

qzi+1|xi
exp {−β′

i+1dx,zi+1}(f i+1
x,xi,zi+1)

1−αi+1 ,

for i = 1, . . . , N − 1, and fN
x,xN

= 1.

Theorem 1: Let q(0) be positive everywhere, and let
Q(n) = Q(q(n−1)), and q(n) = q(Q(n)) for n = 1, 2, 3, . . ..
Then the sequence q(0), Q(1), q(1), Q(2), . . . , converges to

(Q∗, q∗) = arg inf
Q,q

(Fα,β(Q,q)) .

The proof follows the same line as the proof for the optimality
of BA, given in [3]. Finally, the optimality conditions are given
by
Theorem 2: A given q is optimal if and only if there exists
a legitimate qxi+1|xi

for all qxi = 0, so that

vxN ≤ vxN−1 ≤ · · · ≤ vx1 ≤ 1 ,

for all xN , where

vxj =
∑

x

pxf j
x,xj

exp {−∑j

i=1
β′

idx,xi + α′
i log f i

x,xi
}

∑
zN

qzN exp {−∑N

i=1
β′

idx,zi + α′
i log f i

x,zi
}

.
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