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Abstract— Distributed coding of correlated sources with mem-
ory poses a number of considerable challenges that threaten
practical applications, particularly (but not only) in the context
of sensor networks. This problem is strongly motivated by the
obvious observation that most common sources exhibit temporal
correlations that may be at least as important as spatial or
inter-source correlations. This paper presents an analysis of
the underlying tradeoffs, paradigms for coding systems, and
approaches for distributed predictive coder design optimization.
Motivated by practical limitations on both complexity and delay
(especially for dense sensor networks) the focus here is on
predictive coding. From the source coding perspective, the most
basic tradeoff (and difficulty) is due to conflicts that arise
between distributed coding and prediction, wherein ‘standard’
distributed quantization of the prediction errors, if coupled with
imposition of zero decoder drift, would drastically compromise
the predictor performance and hence the ability to exploit
temporal correlations. Another challenge arises from instabilities
in the design of closed loop predictors, whose impact has been
observed in the past, but is greatly exacerbated in the case
of distributed coding. The main contribution focuses on the
tradeoffs encountered within a more general paradigm where
decoder drift is allowable or unavoidable, and must be effectively
accounted for and controlled. We briefly review our earlier results
on which we build to derive an overall design optimization
method that avoids the pitfalls of naive distributed predictive
quantization and produces an optimized low complexity and low
delay coding system.

I. INTRODUCTION

The theoretical foundation of the field of distributed source

coding (DSC) was laid in the early seventies with the seminal

work of Slepian and Wolf [1], which was followed shortly

afterwards by Wyner and Ziv in [2]. A considerable revival

of interest, with focus on practical code design, has been

witnessed since the late nineties, with the work of Pradhan and

Ramchandran [3] as a notable precursor. The field eventually

saw the emergence of various distributed coding techniques,

mostly with an eye towards sensor networks (see e.g.,[4],

[5]). The basic setting in DSC involves multiple correlated

sources (e.g. data collected by spatially distributed sensors)

transmitting information to a fusion center without any inter-

communication amongst themselves (see Fig. 1). The main

objective in DSC is to exploit inter-source (e.g. spatial) cor-

relations despite the fact that each sensor source is encoded

without access to other sources. The only information available

to a source encoder about other sources involves their joint

statistics (e.g., extracted from training set data).

The main motivation for the work presented here springs

from the fact that most correlated sources in the real-world

are sources with memory, i.e., they exhibit temporal correla-

tions. In particular, sensor networks will often produce data

whose time correlations are at least as important as their

spatial (inter-source) correlations. Examples range from simple

sensors monitoring slowly varying physical quantities such as

temperature, to the extreme of video cameras collecting highly

correlated frame sequences.

Realizing the prevalence of sources with memory and the

importance of exploiting both temporal and inter-source cor-

relation, we target the problem in the representative setting of

distributed predictive coding (DPC) systems. Given the histori-

cal focus on inter-source correlations, most existing DSC work

naturally addressed memoryless sources where one need not

worry about temporal correlations. The implicit assumption

may have been that predictive coding per se is a largely

solved problem, and that extending DSC results to incorporate

prediction would require a straightforward integration phase.

(An alternative argument may appeal to handling long blocks

of source data, e.g., by vector quantization, to exploit time

correlations but the cost in delay and complexity may be

considerable.) We shall, however, see that the generalization

from DSC to DPC is highly non-trivial due to conflicting

objectives of distributed coding versus efficient prediction in

DPC. In other words, optimal distributed coding (in terms of

current reconstruction quality) may severely compromise the

prediction loop at each source encoder. We therefore propose

to investigate new DPC system paradigms and methods to

optimize their design.

There exists a channel coding “camp” of DSC research (see

e.g.,[6], [7]), where long delays may be employed to achieve

the desired performance, (e.g. using turbo/LDPC like codes,

see [8], [9]). The other DSC research direction builds directly

on source coding methodologies. Algorithms for distributed

vector quantizer design have been proposed in [10], [11], [12]

with major or exclusive focus on memoryless sources. The

source coding perspective will be most relevant to us here.
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The temporal correlations within a source can be accounted

by blocking sources into large vectors, but such a scheme will

have high complexity and will be extremely sensitive to ini-

tialization and poor local optima [13], [14], [15]. Motivated by

these observations, a notable approach to predictive coding of

correlated sources have been proposed in [14] where a uniform

quantization grid was imposed on the product space (across

sources) of prediction errors, on which the main support of the

joint distribution was identified and a DSC code devised. The

emphasis in that paper’s results was on the design of optimal

predictor filters in such distributed setting and on how they

deviate from the case of non-distributed predictive coding.

Also in [16], an algorithm was given for predictive coding

of correlated sources where different components (encoder

and decoders) were designed. However in both the previous

settings, neither the optimality of the algorithms was proven

nor the system can be guaranteed to be drift-free for all values

of inter-source/temporal correlations. We have proposed an

optimal algorithm with ‘zero-drift’ for distributed predictive

coding in [17]. Our ‘zero-drift’ algorithm subsumes as special

extreme cases (a) separate predictive coding of sources and

(b)memoryless distributed coding. The main contribution of

this paper, is a ‘controlled drift’ approach that subsumes the

zero-drift approach as a special case that emerges whenever the

impact of potential drift overwhelms the benefits in improved

prediction.

Another design difficulty whose origins are in standard pre-

dictive quantizer design [18] is exacerbated in the distributed

setting. On the one hand, open-loop design is simple and stable

but the quantizer is mismatched with the true prediction error

statistics (as the system eventually operates in closed loop.) On

the other hand, if a distributed quantizer is designed in closed-

loop, the effects of quantizer modifications are unpredictable

as quantization errors are fed back through the prediction loop

and can build up. Hence the procedure is unstable and may

not converge. The effect is greatly exacerbated in the case

of DPC. This will be explained in more details in Sec. II-

E To circumvent these difficulties we use the technique of

asymptotic closed loop (ACL) {[19], [20]} which we rederive

for DPC system design. Within the ACL framework, the design

is effectively in open-loop within iterations (eliminating issues

of error buildup through the prediction loop), while ensuring

that asymptotically, the prediction error statistics converge to

closed loop statistics. In other words, the prediction loop is

essentially closed asymptotically.

The organization of the rest of the paper is as follows. In

Section II, we state the problem formally, introduce notation,

specify the components of the DPC system in zero-drift

scheme and the need of ACL approach for DPC design. Sec-

tion III motivates and specifies the components in controlled-

drift based DPC design. Section III-B gives a brief overview

of ACL for signle source design and presents the iterative

‘controlled-drift’ algorithm for DPC design. Simulation results

are summarized in Section IV.

X̂, Ŷ�

�

�

�

Y
Encoder 2

Encoder 1

Decoder

X

�

Fig. 1. Distributed coding of two correlated sources

II. DISTRIBUTED PREDICTIVE CODING

A. Preliminaries

Consider the simplest distributed source coding scenario of

Fig. 1 where for brevity, but without loss of generality, we

restrict the presentation to two sources. Here X and Y are

two continuous amplitude, correlated (scalar or vector) sources

with memory. The two source encoders (Fig. 1) compress and

transmit source information at rates R1 and R2 bits per sample,

respectively to the central unit (joint decoder). The objective

is to minimize the following expected distortion:

Dnet = E{αd(X, X̂) + (1 − α)d(Y, Ŷ )}, (1)

where d(·, ·) is an appropriately defined distortion measure, X̂
and Ŷ are the reconstruction values for X and Y , respectively

and α ∈ [0, 1] is a weighing factor to govern the relative

importance of the sources at the decoder.

We employ (say, linear) prediction to exploit temporal

redundancies within the sources X and Y respectively. The

prediction errors ex (for X) and ey (for Y ) are likely corre-

lated. Therefore, instead of the standard predictive quantizer,

a distributed quantizer needs to be designed to exploit inter-

source correlations. Since additional information (from corre-

lated source) about a source can be utilized, the encoder and

decoder reconstruction of the prediction errors can be different.

We begin by explaining the ‘zero-drift’ approach [17] wherein

the decoder has access to exactly the same prediction error

reconstruction and then describe the ‘controlled drift’ approach

where the constraint of zero-drift is relaxed.

B. Zero Drift Approach: Distributed Predictive Encoder

The distributed predictive encoder (in zero-drift approach)

for source X is depicted in Fig. 2. High resolution quantizer

Qx maps the prediction error ex = X−X̃enc to an index k rep-

resenting Voronoi region Cx
k . Next, a lossy mapping which we

refer to as Wyner-Ziv (WZ) mapping is employed (the name

loosely accounts for the fact that the scenario involves lossy

coding with side information whose asymptotic performance

bound was given in [2]). The WZ mapping block takes in k
and outputs transmission index i = v(k) representing region

Rx
i =

⋃
k;v(k)=i Cx

k , as well as a corresponding prediction

error reconstruction value êx,enc for the encoder prediction

loop. An example of WZ mapping for a scalar source with

K = 7 and I = 3, is given in Fig. 2. The reconstructed

residual êx,enc is added to X̃enc to obtain X̂enc, the sample

reconstruction value for the encoder prediction loop. A linear

predictor Px is used to predict the next sample of X from
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Fig. 2. Block diagram of a DPC encoder and a scalar example of WZ
mapping from prototypes (Voronoi regions) to indices.
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Fig. 3. The DPC decoder (Zero-Drift) reconstructing source X

X̂enc. For the second source Y , we similarly define the

quantizer Qy , regions Cy
l , Ry

j and prototypes ey
l . Here, the

L Voronoi regions are mapped to J indices via WZ mapping

w(l) = j.

The joint decoder receives an index pair (i, j) to generate

reconstruction values êx and êy , and calculates X̂ and Ŷ . We

next explain the functioning of the distributed predictive coder.

C. Distributed Predictive Decoder

The decoder module in charge of reproducing X (see Fig. 3)

receives indices i and j from sources X and Y respectively.

The index i is used to reconstruct êx,enc and the operations

at encoder prediction loop are mimicked (in order to avoid

drift) to generate X̂enc and X̃enc using the predictor Px.

Given index pair (i, j), the decoder retrieves êx,dec from the

decoder codebook, and adds it to X̃loop to obtain the decoder

reconstruction X̂dec. Here C−1
i and C−1

ij represent “inverse

quantizers”, i.e., the corresponding table look-up operation

applied to the respective codebooks.

D. Observations and Intuitive Considerations

It is important to note that the WZ mapping compromises

the quality of the sample reconstruction in the prediction loop

in order to exploit inter-source correlation and improve the de-

coder reconstruction. In particular, region Rx
i =

⋃
k;v(k)=i Cx

k

is a union of likely distant Voronoi cells Cx
k in the hope

that the information from source Y will allow the decoder

to separate them (see the example mapping in Fig. 2). A fun-

damental tradeoff emerges, as in order to exploit inter-source

correlations between ex and ey to better reconstruct the current

sample at the decoder, we compromised the performance of the

prediction loop and hence the quality of future reconstruction.

It should also be noted that X̂enc is a (coarse) reconstruction

of X which only serves the prediction loop, and is generally

different from X̂dec, the decoder reconstruction of X . Also
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Fig. 4. DPC decoder in open loop during the design phase

note that the “encoder codebook” C−1
i which is used in the

prediction loop at both the encoder and the decoder is, in

general, different from the “decoder codebook” C−1
ij (used

only at the decoder).

E. Closed Loop vs ACL Design

We note that the quantized error sample êx,enc at time n
impacts X̃enc and X̂dec from time n + 1 onwards due to the

presence of prediction loop. On the other hand, êx,dec at time n
only impacts X̂dec at time n, as is explicitly depicted in Fig. 3.

Hence, if one tries to directly design a distributed quantizer for

the quantities being quantized, namely, the pair of prediction

errors ex, ey , while ignoring effects on the prediction loop,

i.e., minimize the following distortion:

E[αd(ex, êx,dec) + (1 − α)d(ey, êy,dec)] (2)

(see e.g., DSC in [12]), the ultimate distortion in (1) will not

be minimized.

It is evident that there are conflicting design objectives for

the distributed quantizer in terms of current reconstruction

versus prediction performance. Let us now consider the need

for an asymptotic closed-loop (ACL) approach that allows

the design iteration to be performed in open-loop, but with

essential closing of the loop asymptotically. Consider the

“open-loop” decoder of Fig. 4. Here a particular sample of

êx,enc will affect only the next sample (in time) of X̂dec and

not all the samples following it. The super-script p in Fig. 4

denotes the ACL iteration (more details and clarifications

in the next section). The ACL design iteration is actually

performed in open-loop by keeping the X̃enc sequence (for

all n) fixed throughout the iteration. A new X̃enc sequence is

then available for the next iteration of ACL. At this point we

merely point out that the design is performed in open-loop but

the prediction loop is effectively closed asymptotically as the

operation mimics closed loop.

By adopting ACL for a DPC system, we can optimize the

various codebooks and WZ mappings to minimize the distor-

tion of (1). A zero-drift approach for DPC design utilizing

ACL has recently been presented in [17]. Herein we relax the

zero-drift constraint in order to achieve better exploitation of

inter-source correlations. We next outline the controlled drift

approach, the underlying ACL, and show how it can be applied

to DPC design.
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III. CONTROLLED DRIFT APPROACH

A. Motivation & Description

To maintain zero-drift in the system, the encoder codebook

is restricted to index i as input. However, the source encoder

has complete knowledge of the prediction error itself or

effectively index k (which is the output of high resolution

quantizer used primarily to discretize the source), while the

decoder has additional knowledge about the prediction error

from the correlated source Y , in the form of index j. This

implies that there exist some additional information that could

be exploited, if an appropriate means were devised. We now

use different codebooks for the prediction loop at the decoder

versus encoder. The encoder codebook can have k as input, and

the decoder loop codebook has inputs i and j. This flexibility

enables better utilization of inter-source correlation at the cost

of some drift in the system. However, appropriate design

of encoder and loop codebooks (as well as predictor) will

optimize the precise overall performance while accounting for

and managing the drift. Note that the controlled-drift approach

actually subsumes the zero-drift scheme where the encoder and

loop codebooks are effectively the same and depend only on

i. The encoder and decoder for controlled drift approach are

depicted in Fig. 5 and Fig. 6.

Components to Optimize Distributed predictive coding de-

sign optimizes the predictors Px, Py , high rate quantizers, WZ

mappings, encoder codebooks, loop codebooks (in controlled

drift approach) and decoder codebooks for all sources. We will

restrict the scope here to the design of the various codebooks

and WZ mappings, and briefly touch on predictor optimization

later on. (For simplicity, we first assume a fixed predictor and

high rate quantizers that are designed using Lloyd’s algorithm

[21] given the open-loop prediction error.)

We next give a brief overview of ACL, cast the distributed

predictive coding problem within the ACL framework and give

the update rules (necessary conditions for optimality) for the

WZ mappings and the three different codebooks: Encoder,

Loop and Decoder; for both the sources. the encoder, loop and

decoder codebooks. For conceptual simplicity, we analyze the

DPC system assuming first order linear prediction. An iterative

algorithm for zero-drift coding can be found in our previous

work [17].

B. Asymptotic Closed Loop Design

1) Predictive Quantizer Design: Let us consider standard

(non-distributed) predictive coding. A predictive quantizer can

be designed using an open-loop (OL) or closed-loop (CL)

approach [18]. In OL the training set of prediction errors

for quantizer design is independent of the quantizer and a

greedy design algorithm (e.g., Lloyd’s) is stable and converges

to a local minimum. However, the prediction loop must be

closed to operate the designed system, resulting in prediction-

error statistics that differ from those observed during design.

Hence, the system performance is suboptimal. In CL, the

system iterates a closed loop run to generate new training

data, followed by redesign of the quantizer, until (hopefully)

convergence. However, since the training set changes with

each iteration, each redesigned quantizer is applied to error

statistics it had not been designed for. Moreover, the change

in statistics is generally unpredictable as, due to the prediction

loop that feeds back errors, there can be distortion build up

as the sequence is processed causing non-stationary statistics

and actual divergence (in terms of the performance cost). In

general, there is no guarantee that the algorithm will converge

and the procedure may be unstable.

The asymptotic closed-loop (ACL) design approach [20],

[19] overcomes these shortcomings of traditional predictive

coder design. A subterfuge is employed wherein the design is

effectively performed in open-loop, where each quantizer is

designed for the statistics of the exact signal it then quantizes

to produce a new sequence of reconstruction for the next iter-

ation, thereby circumventing stability issues. Asymptotically,

the loop is effectively closed in the sense that the design

approaches closed-loop statistics despite open-loop operation

within each iteration. For a detailed treatment of ACL and its

applications, see [19], [20].

More specifically, for a given quantizer Q(p−1) obtained at

iteration p− 1, a new training set of prediction errors T (p) =
{e(p)

n }N
n=1 is generated as:

e(p)
n = xn − P [x̂(p−1)

n−1 ], (3)

where the subscript n denotes time and P is the predictor.

Using T (p), a new quantizer Q(p) is designed and a new set

of reconstruction values for x is obtained by applying the new

quantizer on T (p) itself as:

x̂(p)
n = P [x̂(p−1)

n−1 ] + Q(p)[e(p)
n ]. (4)

Note that the prediction is not from the reconstruction of

the previous sample at the current iteration, but rather from

the fixed reconstruction sequence of the previous iteration.

Hence, unlike CL, the prediction errors to be quantized are

fixed and do not change as we modify the quantizer. Since the

quantizer is applied to the exact error training set for which it

was designed, it is the best quantizer for the job and hence the

cost will decrease. This will result in better prediction. A new

error training set T (p+1) is then obtained and the procedure

is performed until convergence. Since the entire design is

performed in open-loop, it is stable. At convergence, the quan-

tizer updates are vanishingly small Q(p+1) ≈ Q(p). Therefore,

the reconstructed sequence is unchanged with iterations, i.e.,

x̂
(p+1)
n ≈ x̂

(p)
n implying P [x̂(p+1)

n−1 ] ≈ P [x̂(p)
n−1] which means

that asymptotically we are effectively predicting from the

previous sample reconstruction in the current iteration, i.e.,

the loop is effectively closed. So, even though the algorithm

is always running in open loop, the design asymptotically

approaches closed loop conditions.

2) ACL for Distributed Predictive Coder Design: Fig.6

depicts the decoder of source X during ACL design of a

distributed predictive coding system. A similar decoder for

Y is not shown. Note that the prediction loop is indeed open.
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Fig. 5. Controlled-Drift DPC encoder
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ê
(p+1)
x,dec,n+1

C−1
ij,loop

........

.........
..........
.............

........................................................................................................................................................
...........
.........
........
....

Fig. 6. Controlled-Drift DPC decoder

The distortion cost to be minimized is:

E[α d(X, X̂
(p+1)
dec ) + (1 − α) d(Y, Ŷ

(p+1)
dec )]. (5)

Clearly, during iteration p, we seek to minimize the decoder

reconstruction error at iteration p+1. While it is immediately

seen from Fig. 4 and Fig. 6 that the impact of the optimiza-

tion should be so measured, this is an important observa-

tion because it illustrates the greater importance of ACL in

the distributed coding scenario. In the case of plain (non-

distributed)predictive quantization, optimizing the quantizer

for best reconstruction of the current sample is a reasonable

(though not perfect) objective, since better reconstruction is

expected to help prediction of the next sample. This is no

longer the case in DPC because of the WZ module. Optimizing

WZ for best decoder reconstruction of the current sample will

considerably compromise the encoder reconstruction (which

has no access to source Y ) and thereby compromise the

prediction loop. This is, in fact, an illustration of the un-

derlying conflict between predictive and distributed coding.

Note finally that, asymptotically, the fact that we optimize for

reconstruction at iteration p + 1 makes no difference due to

the effectively closed loop.

C. Update Rules

We assume mean-squared error distortion for simplicity.

While the notation in what follows is heavy due to the multiple

indexing involved in DPC; in a nutshell, we alternate between

optimization of the decoder codebook, encoder codebook, loop

codebook and WZ mapping while fixing the other three. Let

the distortion for the next sample in the next iteration be:

d
(p+1)
n+1 = α d[xn+1 − x̃

(p)
loop,n+1, êx,dec(i

(p+1)
n+1 , j

(p+1)
n+1 )]

+(1 − α) d[yn+1 − ỹ
(p)
loop,n+1, êy,dec(i

(p+1)
n+1 , j

(p+1)
n+1 )]. (6)

The following determines the update rules in terms of the

subset of distortion terms to be minimized (i.e., those that

depend on the parameters being updated) while avoiding

detailed notation.

1) Decoder Codebook: Entry (i, j), i = 1 : I and j = 1 :
J is obtained by minimizing

∑

n:(e
(p+1)
x,n+1,e

(p+1)
y,n+1)∈R

i
×R

j

d
(p+1)
n+1 . (7)

2) Loop Codebook: Entry (i, j), i = 1 : I and j = 1 : J
is given by minimizing:

∑

n:(e
(p)
x,n,e

(p)
y,n)∈R

i
×R

j

d
(p+1)
n+1 . (8)

3) Encoder Codebook: Entry k, k = 1 : K is given by

minimizing:

êx,enc(k) =
∑

n:e
(p)
x,n∈C

k

d
(p+1)
n+1 , (9)

4) WZ Mappings: For k = 1 : K, assign region k to index

i = v(k) such that:

v(k) = arg min
i∈{1..I}

∑

n:e
(p)
x,n∈Ck or

e
(p+1)
x,n+1∈Ck

d
(p+1)
n+1 . (10)

To reduce clutter, superscripts were omitted above where

obvious, e.g., Ri rather than Rx
i .

IV. SIMULATION RESULTS

The following Gauss-Markov source model is used for

simulations: Xn = βXn−1+wn and Yn = γYn−1+un, where

wn, un are i.i.d., zero-mean, unit variance, jointly Gaussian

scalar sources with correlation coefficient ρ. A training set of

size 5000 scalars is generated. The predictors Px (and Py)

are first-order linear predictors designed using X (and Y ).

Simulation results are depicted in Fig. 7. In all simulations,

the weighting coefficient of (1) is set to α = 0.5 so that equal

importance is given to both sources at the decoder. The number

of prototypes is 60 for each source.

In the first experiment, β = γ = 0.8 and ρ = 0.97. Both

sources are encoded at the same rate. The weighted distortion

at the decoder is plotted versus the number of transmitted bits

for each source. We compare: (a) non-distributed predictive

coding (PC), i.e., each source is compressed using standard

predictive coding; (b) memoryless distributed coding, i.e.,

no prediction is performed; (c) zero-drift based distributed

predictive coding (DPC-ZD) and (d) controlled-drift based dis-

tributed predictive coding (DPC-CD). The two DPC schemes

(with or without drift) clearly outperform the other two com-

pression schemes and gains of ∼ 1.8 dB are achieved (e.g., at
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Fig. 7. Performance comparison of distributed predictive coding schemes, non-distributed predictive coding, and memoryless distributed coding. The figures
show distortion or SNR vs. rate, temporal correlation, and inter-source correlation.

R1 = R2 = 2 bits/sample) between the DPC-CD scheme and

tradition predictive coding or memoryless distributed coding.

In the second experiment, ρ = 0.97 and the transmission

rates for the sources are fixed at 2 bits/sample. Here, we

plot SNR = αE[X2]+(1−α)E[Y 2])

αE[(X−X̂)2]+(1−α)E[(Y−Ŷ )2]
versus temporal

correlation β(= γ). In the third experiment, β = γ = 0.6 and

R1 = R2 = 2 bits/sample. We plot the weighted distortion

versus inter-source correlation ρ.

All experiments provide evidence that DPC schemes per-

form considerably better than individual predictive coding of

sources or distritbuted (memoryless) coding.
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