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Abstract—We focus on a new, potentially important application
of source coding directed toward storage and retrieval, termed fu-
sion coding of correlated sources. The task at hand is to efficiently
store multiple correlated sources in a database so that, at any
point of time in the future, data from a selective subset of sources
specified by user can be efficiently retrieved. Only statistical
information about future queries is available in advance. A typical
application scenario would be in storage of correlated data gener-
ated by dense sensor networks, where information from specific
regions is requested in the future. We propose a fusion coder (FC)
for lossy storage and retrieval, wherein different queries are han-
dled by allowing for selective (compressed) bit retrieval. We derive
the properties of an optimal FC and present an iterative algorithm
for its design. Since iterative design is initialization-dependent, we
present initialization heuristics that help avoid poor local optima.
An analysis of design complexity reveals complexity growth with
query-set size. We first tackle this problem by exploiting opti-
mality properties of FCs. We also consider quantization of the
query-space with decision trees in order to adapt to new queries,
unseen during FC design. Experiments conducted on real and
synthetic data-sets demonstrate that the proposed FC is able to
achieve significantly better tradeoffs than joint compression by
vector quantization (VQ), with retrieval speedups reaching 3
and distortion gains of up to 3.5 dB possible.

Index Terms—Database query processing, multisensor systems,
source coding, vector quantization (VQ).

I. INTRODUCTION

T HIS paper considers the problem of storing correlated
sources in a database for future retrieval of any subset

of them as queried by users. This problem differs from the
well-known distributed source coding setting [1], [2] in that
all information about the sources is centrally available during
encoding for storage in the database. However, only statistical
information about future queries is available. Such database de-
sign introduces fundamentally new and interesting challenges.
On the one hand, intersource correlations may be exploited
via joint coding to reduce the overall storage requirement and
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to potentially reduce the retrieval time. On the other hand, a
future query may select only a few of the sources for retrieval,
and it would be wasteful to have to retrieve the entire (jointly)
compressed data only to reconstruct a small subset.

Thus, at the heart of the problem lies a tradeoff between
storage rate (space) versus retrieval rate (time), both measured
in terms of bits stored or retrieved. An example application
of the proposed fusion coding of correlated sources is in the
arena of sensor networks, which has been the focus of extensive
research in recent years. Much of the effort in sensor network
design has been dedicated to the development of device and
communication technologies [3]. However, in order to fully
realize the potential of most such systems, it is necessary to
efficiently store the vast volumes of data generated by the
network for future retrieval, as needed for analysis or other
uses.

Consider a network of surveillance cameras covering a scene.
The video signals generated by these cameras are expected to be
highly correlated since they are covering the same scene. This
data is sent to a fusion center to be stored for possible future
analysis. We note in passing the more generalized setting of
multiple storage centers, each of which store video data from
one or more cameras, i.e., distributed storage, but for the sake
of simplicity, we assume herein that all video signals are stored
in a single fusion center. When the data from the fusion center
is eventually accessed by a user, it is very likely that the views
from only a small subset, and not all, of the cameras will be re-
quested at any given time. Note also that fusion storage of corre-
lated sources has applications even in areas that are far removed
from traditional signal processing and communications, such as
storage and indexing of stock market data streams [4].

Fig. 1 depicts the setting we consider. The fusion coding
problem was first posed by us in [5], where an information-the-
oretic characterization was derived for the achievable lossless
coding rate region via reformulation as a multiterminal source
coding problem [6]. By allowing for some loss in quality, the
database designer has greater freedom in optimizing tradeoffs
between storage rate and retrieval rate. In our early work [7],
we derived a lossy fusion coder design scheme that directly
optimizes the distortion-retrieval rate tradeoff for memoryless
sources. The fusion coder is composed of three modules: en-
coder, decoder and bit-selector (see Fig. 2). This paper sub-
sumes our preliminary conference publication [7] and, besides
a comprehensive treatment of the proposed paradigm and ap-
proaches, expands to encompass important practical consider-
ations including reduced complexity variants and methods to
avoid poor local optima of the cost surface and enable calcula-
tion of operational retrieval rate-distortion curve. We also study
methods to quantize the query space in order to handle the large
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Fig. 1. Fusion coding of correlated sources. (a) A 2D sensor field. Dots represent sensors and boxes represent regions of interest (queries). (b) Fusion storage and
selective retrieval.

Fig. 2. Proposed fusion coder.

query sets that are typical and adapt to future queries unseen
during training.

II. PRELIMINARY MOTIVATION

Let us denote the correlated sources as the set
. We define a query as the subset of sources that need

to be retrieved. Employing binary variables to de-
note whether source is requested or not, we represent queries
by -tuples of the form

(1)

where is the domain-set of queries. We next intro-
duce notation for the query distribution, or the probability mass
function (pmf)

(2)

There are possible queries, and . Without
loss of generality, we assume that each source is requested with
positive probability (i.e., there exists some query with positive
probability whose requested subset includes the source) and that
a query always asks for a nonempty subset of sources, i.e.,

(3)

In our notation, boldface letters in lowercase and uppercase rep-
resent vectors and random vectors, respectively.

We term each -tuple entry as a sample. Given a database of
constant size (constant number of samples), the retrieval time or
the time required to retrieve a subset of sources is proportional
to the number of bits retrieved per sample, which we term the
retrieval rate. If the number of bits retrieved per sample to an-
swer query is , then the average retrieval rate is

(4)

Our goal is to minimize the retrieval time or equivalently to min-
imize the retrieval rate.

A. Why Compress for Storage?

The rapid development of low-cost, high-density storage de-
vices motivates one to consider why compressed storage is even
considered. We note that we are considering storage of data from
many correlated sources, the number of which could run from
hundreds to several thousands. Hence, the volume of data en-
countered could overwhelm storage systems, unless compres-
sion is performed. A significantly more important issue is that
stored data are often going to be requested by users, and without
(joint) compression of the requested sources, unnecessarily ad-
ditional bits would need to be retrieved. Since retrieval time
is proportional to the number of retrieved bits, without com-
pression, retrieval times would be very large. Lastly, compres-
sion would also be intricately linked with any high-dimensional
index for nearest-neighbor search over such databases [8]. For
example, the popular VA-File [9] and VA-Stream [4] approaches
to similar pattern retrieval use compressed versions of the data-
base to prune the search space and speed up search times.

B. Information Theoretic Bounds on Lossless Storage and
Retrieval

To compress any source of information , the number of
bits required for lossless representation should be at least the
Shannon entropy (entropy-rate, for sources with memory) of
the source, . Information theory offers straightforward
bounds on the performance of naive compression techniques
when applied to the problem of fusion coding.
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1) Minimal Storage Rate: It follows from Shannon’s basic
result that the minimal number of bits required to store
sources , i.e., the minimal storage rate is

(5)

Since , joint compression of
correlated sources never requires more bits (and usually requires
less bits) for storage than separate compression (due to its ability
to exploit intersource redundancies). The retrieval rate for this
method is similarly

(6)

since the entire compressed description needs to be retrieved for
any query.

2) Minimal Retrieval Rate: If we denote the set of sources
queried as

the minimum number of bits required to reconstruct the sources
requested by query is , and hence, the minimum re-
trieval rate averaged over the query distribution is

This implies that joint compression is suboptimal in retrieval
speed. In order to achieve the fastest retrieval speed, we need to
separately compress and store each subset of sources that may
be requested.

It is important to note that we are actually faced with a storage
and retrieval problem, where the sources are provided to the
database designer for storage and future retrieval. Individual
sources are available during encoding time, but when queries
arrive, all we have is the stored data. Minimum retrieval rate re-
quires that the optimal compressed version for a specific query
be ready for retrieval. Any reencoding operation would require
first to retrieve the necessary information and would hence beat
the purpose of minimum retrieval rate. Therefore, encoding on
the fly, depending on the query, is not really an option.

On the other hand, unless is very small or the set of queries
is severely restricted, the storage requirement would be im-

practically high as it would have to individually accommodate
a very large (possibly an exponential) number of queries, i.e.,

(7)

Thus, it is clear that the optimal storage technique is wasteful in
retrieval speed, and the optimal retrieval technique is wasteful
in storage.

3) Separate Compression: Last, we consider separate coding
of each source. The storage rate for lossless separate compres-
sion is

(8)

while the retrieval rate

(9)

Clearly, separate coding/quantization would be severely subop-
timal both in storage efficiency and retrieval speed. It ignores the
correlations that exist across sources, thereby incurring larger
storage costs and higher retrieval time than necessary.

III. FUSION CODER FORMULATION

Consider real-valued sources , . Any
practical signal storage scheme would need to quantize the data
before storage, which entails some error or distortion. Given
query , the reconstruction distortion is measured as

(10)

where

(11)

Hereafter, we will specialize to the squared error distortion
measure

(12)

We propose a fusion coding framework to optimize the fu-
sion storage-selective retrieval of correlated sources. A block
diagram for the fusion coder (FC) is given in Fig. 2. The FC is
composed of three modules: encoder, bit (subset)-selector, and
decoder. We define the encoder by the function

(13)

which compresses the -dimensional input vector , repre-
senting the sources, to bits at each instant.

The bit (subset) selector is the mapping

(14)

where represents the domain-set of queries and
is the power set (set of all subsets) of the set .

This mapping determines which of the stored bits to retrieve
for a given query . Clearly, , . For
each subset of bits that can be retrieved, an estimate of all the
sources is formed by the decoder

(15)

where is the corresponding codebook. We introduce
this notation for the decoder in order to simplify notation for
representation of subsets of bits of the encoding index. The de-
coder does not access all the encoded bits, even though one ar-
gument of the decoder function is , where is some encoding
index. Nor does it assume more information about the sources
than allowed by the bit-selector setting for each query.

The average distortion for a specific query is

(16)
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where denotes statistical expectation, and the distortion
averaged across all queries is . In prac-
tice, we only have access to the database and not neces-
sarily the underlying joint probability distribution function. We
assume that the database samples are drawn i.i.d from an un-
known joint distribution and use the database as a training set.
We then replace the expectation operator by a simple av-
erage, evaluated across the database . This practice is justified
by the ergodic property that with a large enough sample set, the
sample average approaches the expected value. We note that this
is a standard procedure (in compression and statistical pattern
recognition) in the use of a training set to estimate expectation
over underlying unknown joint distribution. Hence, the distor-
tion is evaluated as

(17)

Noting that , the average retrieval rate is

(18)

Given correlated sources, the designer aims to minimize
distortion (or maximize quality) and at the same time minimize
retrieval rate and storage rate, which necessitates a tradeoff be-
tween the three competing quantities. In our approach, we fix the
storage rate and optimize the retrieval rate-distortion tradeoff.
This choice is not fundamentally necessary, but is motivated by
practical system design, where the designer typically knows the
storage capacity (RAM/hard-disk capacity), or effectively the
storage rate, and where the tradeoff between distortion and re-
trieval rate is the remaining design flexibility. This is equivalent
to minimizing the corresponding Lagrangian

(19)

where the Lagrange multiplier controls the tradeoff.
We note that this Lagangian formulation is well known in op-

timization literature [10] and is equivalent to minimizing the dis-
tortion subject to a retrieval rate constraint, where varying the
value of the parameter provides optimal solutions at varying
levels of the retrieval rate constraint. Indeed, the Lagrangian for-
mulation is basically tradeoff control between competing quan-
tities, and the solution is easily converted to different options of
which quantity is constrained and which is optimized. A clas-
sical example of such easy conversion are the rate-distortion and
distortion-rate functions of information theory (see [11]).

IV. NECESSARY CONDITIONS FOR OPTIMALITY

The Lagrangian cost can be rewritten as

(20)

1) Optimal Encoder: From equation (20), the optimal en-
coding index for input vector satisfies

(21)

It is easy to see the resemblance to the “nearest neighbor” con-
dition in quantizer design [12].

2) Optimal Bit-Selector: Similarly, the best set of bits to re-
trieve for a particular query should be the one that minimizes
the query’s contribution to the Lagrangian cost of (20)

(22)
3) Optimal Decoder: Let be an encoding index and

represent some subset of bits. We use to denote the
subindex extracted from by retrieving the bits in the positions
indicated by and to denote the corresponding code-
vector. Clearly, the choice of codevector does not affect the rate
component of the Lagrangian cost .

Let and .
We can rewrite the distortion as

(23)

where .
In the optimal decoder, the partial derivatives of with re-

spect to the codevector , are 0.

(24)

We note in passing that this necessary property of the optimal
decoder is reminiscent of the “centroid” rule in quantizer design
[12].

A. Algorithm for Fusion Coder Design

Since we are considering the storage and retrieval of sig-
nals from a database, the signals from all sources are already
available. Hence, while one would use the entire database as a
training set, it is equally important to note that the database is
also the test set. A natural design algorithm is to iteratively en-
force each of the necessary conditions for optimality (derived in
the preceding sections), until a convergence condition is satis-
fied. In effect, the algorithm just partitions the elements of the
training set and the storage bits into different groups, and for a
finite-sized training set and a finite storage rate, there exist only
a finite number of set partitions. At each step of the optimization,
a subset of parameters is adjusted to minimize the Lagrangian
cost. Since the cost is nonincreasing at each step, the algorithm
is guaranteed to converge in a finite number of iterations. It is
to be noted that since the Lagrangian cost surface is nonconvex
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and has multiple local optima, iterative design would be initial-
ization dependent and may not lead to a globally optimal solu-
tion. Better (but more complex) optimization techniques such as
deterministic annealing [13] may be necessary to approach the
global optimum.

V. DESIGN COMPLEXITY

This section begins with a discussion of complexity of design
and operation. We later exploit the optimality properties of the
FC and provide heuristics to accelerate the design procedure.

At the encoder, the search for the optimal encoding index for
each element in the training set/database involves dis-
tance evaluations of the form . This
implies a net complexity cost additions and
multiplications in encoder optimization. Codebook optimiza-
tion, on the other hand, involves computation of averages of
different subsets of the training set, and this complexity grows
as for each codevector. Additionally, the total number

of codevectors that need to be maintained is

. Each vector average is over components, and hence
codebook update involves addition operations.

The optimization of the bit(-subset) selector is effectively a
search for the best subset among the set of possible sub-
sets for each query . This involves computation of the average
distortion across the entire data-set, over all possible bit-sub-
sets for each query. This implies that the complexity of this step
grows as . We also note that the storage com-
plexity of the bit-selector, which is just a lookup table, grows
as . Clearly, the complexity of FC design scales linearly
with the size of the database, the query set, and the number of
sources, but exponentially with .

A. Complexity of Operation

Once the system has been designed, the encoding of the
database has been completed. Hence, during usage/deploy-
ment, only the decoding is performed. For each query, the
optimal subsets of encoded bits are retrieved, and the relevant
sources are reconstructed. However, if only a small part of
the database was used to train the system, either to speed up
training or because these entries were unavailable during the
FC design phase, any remaining/new entries would of course
need to be encoded (entailing the corresponding encoder usage
complexity).

B. Complexity Reduction Strategies

We note that the query-set could be very large as could
be the number of sources considered and the database itself.
A first attempt at reducing complexity would be to limit the
training set to be a statistically representative subset and not
the entire database. However, the design complexity may still
be unacceptable as it is a product of the sizes of the training
set, query set, and the number of sources. In this section, we
exploit properties of the optimal FC to further reduce the design
complexity.

1) Faster Encoding With an Average Codebook: At first
glance, the assignment of the optimal encoding index to each
input vector [see (21)] involves operations.

However, properties of the squared-error distortion measure
may be exploited to reduce encoding complexity. Noting that

, it is easy to see

where the matrix is diagonal, with This
implies that

The first term is common to all encoding indices and hence
need not be computed. The second term could be viewed as
an inner (dot) product of with a query-averaged codevector

, and the last term, , is a con-
stant independent of . and can be computed in a sepa-
rate step prior to the encoding of all . Thus, we obtain the faster
encoding rule

(25)

The new encoder design/operation is now of
complexity since the computation

of the average codebook is a one-time affair prior to encoding
the entire database (training set).

2) Recursive Decoder Codevector Update: Given storage
bits, there are codebooks, one for each nonempty subset
of bits. We denote the codevector based on all encoded bits
for index as .

Let , , and
. It is easy to see that

(26)

and that , . Consequently

(27)

(28)

However, (24) also implies

(29)

Hence
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In other words, codevector update is effectively the
weighted (vector) average of the corresponding code-
vectors obtained by extracting all the stored bits. Hence,
codebook update can be performed recursively starting off
from the updates of , , and is now of

complexity.
Note that the storage complexity is reduced from to

codevectors. We store and , , and extract all
other codevectors by appropriate averaging.

3) Reduced Complexity Bit-Selector Optimization: The op-
timal bit-selector satisfies

Let , ,
. Now, by interchanging the order of summation

(30)

which implies that we could compute , , , in a
separate step and use this result in finding the optimal ,

. Hence, the complexity of bit-selector optimization reduces
to .

VI. INITIALIZATION STRATEGIES

We note that there are two mappings that require initializa-
tion—the codebook and the bit-selector . As described in
Section IV-A, FC design is iterative and dependent on initial-
ization. Additionally, the cost surface is nonconvex and riddled
with local minima. Therefore, for any given , FC design should
be performed with different (possibly random) initializations in
order to avoid poor local minima. In this section, we describe
some initialization heuristics that would help avoid some poor
minima. (Global optimization techniques may be used, but are
beyond the scope of this paper.)

A. Computation of Operational Retrieval Rate-Distortion
Curve

Suppose for some , a good codebook and bit-selector are
known. This can be a good initialization point for other
points. For an incrementally different value of , we start off
with the same codebook, iteratively optimize the bit-selector,
the encoder, and decoder (in that order) till convergence. Alter-
natively, we could retain the same bit-selection and iteratively
optimize the encoder, decoder, and bit-selector (in that order).
This process could be used to gradually compute the entire rate
distortion curve.

Now, for an arbitrary , it is unclear how best to initialize the
bit-selection and codebooks. However, there are two extreme
settings where good heuristics for bit-selector initialization are
possible. By starting at either of these points, it is possible to
sweep through the entire curve. This would alleviate initial-
ization issues to some extent, even though multiple runs with
random codebook initialization could still be necessary to ob-
tain good results.

1) Retrieve All Bits or : We first consider the special
case when . This implies Lagrangian cost is solely com-
posed of distortion and that the penalty for bit retrieval is zero.
In other words, the optimal bit-selector setting is to retrieve all
compressed bits. This initialization setting would work for all
query sets.

2) Retrieve Only One Bit or : Next, we consider the
case when (or in practice, a very large value). This im-
plies that the Lagrangian cost is dominated by , while dis-
tortion plays almost no role. Since the FC is constrained to re-
trieve at least one bit, the bit-selector setting must do exactly
that, i.e., retrieve exactly one bit for any query. Since there are

encoding bits, by retrieving one bit per query, the query set
is partitioned into groups of queries, where the same bit is re-
trieved by the bit-selector. We note that when , each
group consists of only one query, and some storage bits could
remain unused. When , we ensure that nonempty
groups are created. This partitioning of the query set is neces-
sary so that all allowed bits (all degrees of freedom) are used
during encoding. We note that such partitioning of the query set
would clearly be possible in some query distributions, such as
those with multiple modes. In other settings, this partitioning
may not be very clear, and the alternate initialization scheme
(Section VI-A1) would be preferable.

VII. ADAPTING TO LARGE/INCOMPLETE QUERY

TRAINING SETS

In the fusion coder, we note that the bit-selector is a lookup
table that grows with the size of the query-set. In principle,
the query-set might be very large. For example, if
sources and suppose any query of size 20 can be requested,
then , which would impose an unbear-
able storage requirement. In an extreme case, the query-set may
be the entire distribution, i.e., . Even otherwise,
the query-set may change after training, i.e., a different set of
queries (nevertheless drawn from the same distribution) might
be encountered during operation. In either case, the queries need
to be classified (grouped), where all queries in a group share the
same bit-selection (combination of bits).

Let the allowed number of groupings be . We define the
query-classifier as the mapping

(31)

defines disjoint partitions of the query-space such
that

(32)

(33)

The bit-selector is modified to be the mapping

(34)
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where the notations have the usual meaning. The Lagrangian
cost to be optimized is

(35)

Now, must be optimized based on the available (training)
set of queries and should be capable of accurately classifying
an unseen test query. This might require some structural con-
straint to be imposed on , such as the nearest neighbor classi-
fier, nearest prototype classifier, decision tree, etc. This structure
can be either adjusted during the optimization of all mappings

, , or optimized offline (after which , , would need
to be reoptimized). In subsequent sections, we shall confine dis-
cussion to the latter option.

A. Necessary Conditions for Optimality

We now present the optimality conditions for this fusion
coder (avoiding lengthy derivations).

1) Optimal Encoder: From (35), the optimal encoding index
for input vector is

(36)
2) Optimal Bit-Selector: Similarly, the best set of bits to re-

trieve for a particular label (query-region/partition) is the one
that minimizes the Lagrangian sum of the distortion measure

, averaged over the training set, and the re-
trieval rate, i.e.,

(37)

3) Optimal Query-Classification: The optimal labeling
(grouping) of the queries would be

(38)

4) Optimal Decoder: We use to denote the subindex ex-
tracted from by retrieving the bits in the positions indicated by

and to denote the corresponding codevector. By setting
to zero, the partial derivatives of with respect to

, we obtain the optimal decoder to be

(39)

where .

B. Algorithm for Design

We design the fusion coder by iteratively applying the condi-
tions for optimality. Upon convergence, we learn the parameters
of the structure imposed on such as the centroids, prototypes,
the nodes to be split etc. Given the structure of , we reoptimize

, , .

VIII. EXPERIMENTAL RESULTS

A. Data-Sets

We tested our algorithm extensively on both synthetic and
real data-sets, where we evaluated the operational (retrieval) rate

versus distortion curves for different settings of storage
complexity. A brief description of our data-sets follows.

1) SYNTH: Synthetic Data: The sensor sources were mod-
eled as zero-mean, correlated Gaussian sources (of unit variance
i.e., ) independently and identically drawn from a jointly
Gaussian density, with the correlation between sources modeled
as falling exponentially with distance. Specifically, if repre-
sents the correlation between sources and

(40)

where . This correlation model can be expected
when spatio-temporal sensor fields are uniformly sampled [14].
We created synthetic data-sets with and , cor-
responding to low and moderately high correlation data-sets,
with sources, each having 6000 training samples and
1 000 000 test samples. The performance on the test set is re-
ported.

2) STOCKS: Real Data: The first real data-set, the STOCKS
data-set, is available in the University of California, Riverside
(UCR) Time-Series Data Mining Archive.1 It consists of

stocks, each having 3000 samples.
3) Intel Berkeley Sensor Data: The second real data-set

used was the one generated by the Intel Berkeley Research Lab,
CA.2 Data were collected from 54 sensors deployed in the Intel
Berkeley Research Lab between February 28 and April 5, 2004.
Each sensor measures humidity, temperature, light, and voltage
values once every 31 s. We retain data from those sensors
that generated in excess of 50 000 readings. This corresponds
to temperature, light, humidity, and voltage readings from
15 sensors, which is equivalent to 60 sources.

B. Query Distribution

We tested the performance of the fusion coder on several
query distributions that model real user behavior. Even though,
in theory, there are possible queries, typically only a
smaller subset of sources (say ) will normally be requested
at any time. There are ways of selecting out of ob-
jects, and for moderate values of , even this might be very
large. For example, if and , and

.

1The authors would like to thank Dr. E. Keogh of UCR for kindly providing
the STOCKS data-set.

2Download from http://db.csail.mit.edu/labdata/labdata.html.
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Fig. 3. “Neighborhoods” of sources (on a 1-D sensor array) of varying size.

Fig. 4. EXP: Exponential distribution on “neighborhood” (query) sizes for
� � �� sources.

We describe exponential queries (“EXP”), which we believe
are reasonable models for real-user behavior. Queries request
for contiguous neighborhoods of sources (see Fig. 3). We im-
pose a shifted exponential distribution on neighborhood size. In
our sample distribution, on an average, nine are requested, and
it is representative of 345 queries, which were randomly gen-
erated. Even though the queries were chosen randomly, we en-
sured that each source is requested by at least one query. Fig. 4
is representative of this query distribution. The probability is
plotted versus the size of the query . It is also to be noted that
even a query set of size 345 cannot be handled with the naive
storage technique presented in Section II-B2, i.e., compressing
and storing every subset of sources separately, without paying
an enormous price in total storage.

C. Fusion Coding (FC) versus Joint Compression (VQ)

We compared the performance of joint compression and se-
lective bit-retrieval for both the synthetic and real data-sets (see
Figs. 5–7). Joint compression of the data-set was performed by
a vector quantizer (VQ) designed with the standard Generalized
Lloyd Algorithm (GLA) [12]. We note that in joint compres-
sion, all the compressed bits are retrieved, i.e., .
Since the designer has a handle only on , different points on
the operational retrieval rate-distortion curve are obtained by
varying the storage (compression) rate . In experiments on
all data-sets, for VQ, bits. For the proposed FC,
performance was evaluated at two storage settings, and

bits. Since both systems are designed iteratively, they
are initialization-dependent. We performed 20 different runs
with random codebook initializations (for both VQ and FC) and
present the best performance of each method. This amounts to
plotting the convex hull of the various points obtained
in each method.

Note the fundamental shortcoming of VQ, in that it ties
storage and retrieval rates together. On the other hand, FC

Fig. 5. Data-set SYNTH, � � ���.

Fig. 6. Data-set SYNTH, � � ���.

has additional degrees of freedom through which it is able to
reduce retrieval rate without changing storage rate, leading
to substantial gains over VQ. For the synthetic data-set with

(Fig. 5), FC is able to provide a speedup of nearly
3 at a distortion level of 9.1 dB. For the synthetic data-set
with (Fig. 6), there is a speedup over the
joint compression technique, with average distortion of 8 dB.
Additionally, there is also a distortion gain of nearly 1 dB at
a retrieval rate of 1 bit per sample. Since each source is a unit
variance Gaussian, it also has unit energy. On the average,
nine sources are retrieved, which implies that the average
“signal energy” is 9.5 B. This also equals the distortion when

bits per sample, i.e., when no information is retrieved
from the database. Thus, compression by FC or VQ leads up
to 0.7 dB reduction in distortion for the data-set and
2.7 dB reduction in distortion for the dataset.

In the real data-set STOCKS (Fig. 7), FC provides a
speedup with distortion 28 dB and nearly 3.5 dB less distortion
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Fig. 7. Data-set STOCKS.

Fig. 8. Data-set Intel Berkeley Sensor Data.

at an average retrieval rate of 3 bits. In the Intel Berkeley Lab
data-set (Fig. 8), we notice gains in the range of 2.6 dB at an
average retrieval rate of 2 bits and 3.5 dB at an average retrieval
rate of 3 bits. FC also provides reduction in retrieval
rate at a distortion of 26.2 dB. We also note that increasing
results in better performance of the selective retrieval technique.
This is possible since increasing storage allows more freedom
in the design of the bit-selector. However, this increase in gain
is relatively marginal in the real data-set. We believe that this is
because the design algorithm gets trapped in local minima that
riddle the cost surface.

Also note the different scaling in distortion for the real data-
sets due to the presence of sources with high variance. For ex-
ample, in the sensor data-set, voltage is measured in volts and
varies in the range 2–3 V. However, light falling on the sensor
is measured in lux and varies from 1 lx in moonlight, 400 lx in

Fig. 9. Data-set SYNTH, � � ��� with query quantization.

Fig. 10. Data-set SYNTH, � � ��� with query quantization.

a bright office, and 100 000 lx in full sunlight.3 The mean signal
energy for the retrieval of nine sources is 57.65 dB, which equals
the distortion for the bits case. Thus, compression with
FC and VQ leads to almost 5 dB reduction in distortion when

bits. For the STOCKS dataset, the mean signal energy
for the retrieval of nine sources is 34.8 dB, and compression
with FC and VQ leads to almost 14 dB reduction in distortion
when bits.

Finally, note that the “acceptable”/“good” distortion levels
are dependent on particular applications and uses. As the al-
lowed storage rate is increased, the distortion would decrease
for both FC and VQ. However, (as is evident from experimental
results) the performance would be similar, i.e., at , the
performance of FC and VQ are the same. Yet, as is gradu-
ally reduced, VQ is forced to reduce as well and, hence, has
higher distortion than FC for the same .

3See http://db.csail.mit.edu/labdata/labdata.html for details.
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D. Quantization of the Query-Space

Once the queries were grouped as described in Section VII-A,
we partitioned the query space with a decision tree [15], [16].
We preferred the decision tree over the nearest neighbor/nearest
prototype classifiers since the performance of the latter would
be dependent on meaningful distance/distortion metrics for the
discrete query space . For example, if two sources are
highly correlated, the request for either or both of them should
have the same retrieval cost (subset of bits), and hence it would
make sense that these queries be handled together. It might be
necessary to employ a (linear/nonlinear) transformation to a sec-
ondary feature space for the Euclidean norm to make sense. On
the other hand, decision trees can operate on discrete data and
are known to be efficient classifiers in this setting. Hence, we
expect the decision tree paradigm to handle (unknown) queries.

The training set of queries were partitioned into groups
during the fusion coder design (as explained in Section VII).
Subsequently, a decision tree that performs this classification
was constructed, and the fusion coder components were reop-
timized. Next, a test set of 345 queries was extracted from the
same distribution. This new set of queries was classified by the
decision tree, and the resulting distortion-retrieval rate perfor-
mance of the system was evaluated.

We note a very small loss in performance of the system on the
new set of queries as compared (see Figs. 5, 6, 9, and 10), and
the performance advantages over the joint compression (VQ)
scheme are maintained.

IX. CONCLUSION

We introduced the problem of fusion storage of correlated
sources with selective retrieval. We proposed a fusion coding
framework to perform optimal encoding, retrieval, and decoding
of correlated sources. We presented the necessary conditions for
optimality and proposed an iterative algorithm for fusion coder
design, which is guaranteed to converge to a locally optimal
solution. We observed that the proposed FC provides signifi-
cant improvement in retrieval speed, at a prescribed distortion
level as well as significantly better data reproduction quality, for
a given retrieval speed, over both real and synthetic data-sets.
Heuristics for “clever” bit-selector initialization and operational
rate-distortion curve computation were also discussed.

The FC design complexity and the storage requirements of
the bit-selector grow linearly with query-set size. By exploiting
properties of the optimal FC and by performing quantiza-
tion/partitioning of query space, this complexity growth can
be eliminated. However, FC design complexity grows expo-
nentially with the storage rate compounding scalability to
large storage rates and networks. Future work would focus on
methods that trade design complexity against performance so
that FC designs can scale to large sensor networks.
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