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Abstract—This paper studies the problem of global optimization
of zero-delay source-channel codes that map between the source
space and the channel space, under a given transmission power
constraint and for the mean-square-error distortion. Particularly,
we focus on two well-known network settings: the Wyner-Ziv
setting where only a decoder has access to side information
and the distributed setting where independent encoders trans-
mit over independent channels to a central decoder. Prior work
derived the necessary conditions for optimality of the encoder and
decoder mappings, along with a greedy optimization algorithm
that imposes these conditions iteratively, in conjunction with the
heuristic noisy channel relaxation method to mitigate poor local
minima. While noisy channel relaxation is arguably effective in
simple settings, it fails to provide accurate global optimization in
more complicated settings considered in this paper. We propose a
powerful nonconvex optimization method based on the concept of
deterministic annealing—which is derived from information theo-
retic principles and was successfully employed in several problems
including vector quantization, classification, and regression. We
present comparative numerical results that show strict superior-
ity of the proposed method over greedy optimization methods as
well as prior approaches in literature.

Index Terms—Joint source channel coding, deterministic
annealing, estimation, distributed coding.

I. INTRODUCTION

W HILE IT is well known that finite-delay coding
schemes do not achieve the asymptotic bounds in gen-

eral (see, e.g., [1, Theorem 21] or [2]), the problem of obtaining
the optimal coding schemes for finite delay is an important
open problem with considerable practical implications [3]–[9].
Recently, there has been growing interest in utilizing zero-delay
mappings in network applications, see, e.g., [10], [11] for cod-
ing over multiple access channels, [12]–[14] for distributed
coding of correlated sources and [15], [16] for analog multiple
description coding.
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Until recently, there have been two main approaches to
numerical optimization of the mappings: i) Optimization of the
parameter set of a structured mapping [8], [9], [17], [18]. The
performance of this approach is limited to the parametric form
(structure) assumed. For example, in [19] saw-tooth like struc-
ture is assumed for the mapping in the Wyner-Ziv setting and
parameters of such mapping are optimized. ii) Design based
on power constrained channel optimized vector quantization
where a discretized version of the problem is tackled using tools
developed for vector quantization [5], [20], [21].

Our approach builds on recent prior work in our lab [22]
where the problem is studied in the original analog (func-
tional) domain, i.e., without discretization in the problem
formulation and without any assumption of a parametrized
mapping. In [22], necessary conditions for optimality of map-
pings were derived, noting that while such conditions have
theoretical value, they generally identify local optima. They
are practically useless in the case of highly complex cost sur-
faces. In other words, simple greedy methods that are based on
iterative imposition of necessary conditions of optimality tend
to get trapped in local minima. In [22], “noisy channel relax-
ation” (NCR) [23] was employed to mitigate this problem.
As we show in this work, while NCR is rather sufficient for
simple settings, using more advanced non-convex optimization
tools improves the performance significantly in sophisticated
network scenarios.

In this paper, we propose a method based on a powerful
non-convex optimization framework, deterministic annealing,
to numerically approach globally optimal zero-delay mappings
in network scenarios. Our preliminary results appeared in [24],
[25]. We particularly focus on scenarios given in Figure 1:
The first case is a point-to-point source-channel coding with
decoder side information (i.e., the decoder has access to side
information that is correlated with the source). The second set-
ting involves distributed (separate) coding and transmission of
two correlated sources to a central decoder that reconstructs
individual sources. We also consider the function computation
problem, where the decoder estimates a function of the sources.
This is of interest for certain applications such as a wireless
sensor network deployed in order to compute a function of the
measurements [26]–[30].

Deterministic annealing (DA) is derived within a probabilis-
tic framework where the main idea is to introduce controlled
randomization into the optimization process, yet determinis-
tically optimize the appropriate expectation functionals. The
application-specific cost is minimized at successive stages of
decreasing randomness and a nonrandom solution is obtained
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Fig. 1. Problem settings that we consider. (a) Decoder with side information. (b) Distributed coding setting.

while avoiding many poor local minima. Based on information
theoretic principles, and motivated by analogies to statisti-
cal physics, DA has been successfully used in non-convex
optimization problems including clustering [31], vector quan-
tization [32], regression [33] and more (see review in [34]).
We note that DA has been traditionally used in discrete set-
tings, such as quantizer optimization, and integrating DA within
the analog framework in here poses a significant challenge.
There are many important advantages of the DA-based pro-
posed method compared to prior work, including ability to
avoid poor local minima and independence from initializa-
tion; and optimization in the original (analog) domain without
any discretization or simplifying assumptions. Our approach
improves significantly over prior approaches, some of which
are NCR based [21], [22].

Having a powerful optimization method at hand, we analyze
the structure of experimentally obtained mappings and inves-
tigate some conjectures made in prior work. For instance, one
such conjecture was concerning the structure of optimal map-
pings in the side information setting, for which our results
provide contradictory experimental evidence. Several practi-
cally important observations are made regarding the functional
properties of the optimal mappings in network settings (see [35]
for formal discussions of such properties in the point-to-point
setting).

The rest of this paper is organized as follows. In Section II,
we present preliminaries and the problem definition. In
Section III and IV, we describe the proposed method.
Experimental results are presented in Section V and concluding
remarks are in Section VI.

II. PRELIMINARIES AND PROBLEM DEFINITIONS

A. Notations

Let R, N, and R
+ denote the respective sets of real num-

bers, natural numbers, and positive real numbers. We represent
scalars and random variables with lowercase and uppercase let-
ters (e.g., x and X ), column vectors and random column vectors
with boldface lowercase and uppercase letters (e.g., x and X),
respectively. ‖ · ‖ denotes L2 norm operator. Let E(·) and P(·)
denote the expectation and probability operators, respectively.
The probability density function of the random variable X is
fX (x). Let ∇ and ∇x denote the gradient and partial gradient
with respect to x , respectively. Let f ′(x) = d f (x)

dx denote the
first-order derivative of the continuously differentiable function

f . The Gaussian density with mean μ and covariance matrix
R is denoted as N(μ, R). We use natural logarithms which,
in general, may be complex, and the integrals are, in general,
Lebesgue integrals.

B. Problem Definition: Side Information

In the side information setting, given in Figure 1a, side
information Z ∈ R

m2 is available to the decoder, while source
X ∈ R

m1 is mapped to a channel input by the encoding function
g : Rm1 → R

p and transmitted over the channel with additive
noise N ∈ R

p. The received channel output Y = g(X)+ N
and side information Z are mapped to the estimate X̂ by the
decoding function w : Rp × R

m2 → R
m1 . The problem is to

find optimal mappings g,w, where optimality is in the sense
that they minimize MSE

D(g,w) = E{‖X − X̂)‖2}, (1)

subject to some power constraint on the encoder

P(g) = E{‖g(X)‖2} ≤ PE (2)

where PE > 0 is the specified encoder power level. Simple
time-sharing arguments show that D is a convex functional
of P , hence the solution is achieved at P = PE (see [35] for
details.) Converting to Lagrangian formulation, we define the
following cost to be minimized

J = D(g,w)+ λ(P(g)− PE ) (3)

where λ is a Lagrange multiplier corresponding to the power
constraint on the encoder (we suppressed the dependence of J
on g and w).

C. Problem Definition: Distributed Coding

The distributed coding setting, given in Figure 1b, has
two sources X1 ∈ R

m1 and X2 ∈ R
m2 mapped to some chan-

nel input by the encoding functions gi : Rmi → R
pi , and the

decoder receives Yi = gi (X i )+ N i for i = 1, 2. In general,
the decoder might have two type of objectives. In the first
one, the decoder aims to reconstruct each source with mini-
mum distortion. The decoder is defined as w : Rp1 × R

p2 →
R

m1 × R
m2 as it maps the received channel outputs to the

estimates X̂ i for i = 1, 2. For this case, we define distortion as

D(g1, g2,w) = E{‖X1 − X̂1‖2 + η‖X2 − X̂2‖2} (4)
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where η ∈ R
+ is a given weight coefficient. The second type of

problems involve function computation. Denoting the desired
function as γ (X1, X2) : Rm1 × R

m2 → R
r , the decoder is

defined as w : Rp1 × R
p2 → R

r and the cost is given by

D(g1, g2,w) = E{‖γ (X1, X2)− w(Y 1, Y 2)‖2}. (5)

The problem, for both cases, is to find the mappings g1, g2,w

that minimize the overall distortion (which is given in (4) or
(5) depending on the objective) subject to power constraints
on the encoders, which can be in two forms: Individual power
constraints given by

P(gi ) = E{‖gi (X i )‖2} ≤ PT,i for i = 1, 2. (6)

or a total power allocation to the encoders

2∑
i=1

P(gi ) ≤ PT , (7)

which offers the additional degree of freedom of optimizing
power allocation to the encoders. For optimization purposes,
we similarly define the following Lagrangian functional as the
objective cost to be minimized

J = D +
2∑

i=1

λi (P(gi )− PT,i ), (8)

where λi ∈ R
+, i = 1, 2, are Lagrange multipliers to impose

the individual power constraints on the encoders in the first
case. The total power constraint case corresponds to the spe-
cial case of (8) with λ1 = λ2 = λ, i.e., the Lagrangian cost to
minimize is

J = D + λ(P(g1)+ P(g2)− PT ), (9)

where λ controls the total power.

D. Prior Work: Necessary Conditions of Optimality and
Greedy Descent Algorithms

Here, we summarize the relevant contributions of prior work
(see [22] for more details). For the side information setting, let
the encoder g be fixed. Then, the optimal decoder is the MSE
estimator of X given Z = z and Y = y:

w( y, z) = E{X| y, z}. (10)

Expanding the expressions for expectation and applying Bayes’
rule, the optimal decoder can be written in terms of known
quantities as

w( y, z) =
∫

x fX,Z(x, z) fN ( y − g(x)) dx∫
fX,Z(x, z) fN ( y − g(x)) dx

, (11)

where we used the fact that fY |X ( y, x) = fN ( y − g(x)). For
optimality of g, assuming the decoder w is fixed, a necessary
condition is

∇g J (g,w) = 0, (12)

where

∇g J (g,w) = λ fX (x)g(x)

− E{w′(g(x)+ N, Z) (x − w(g(x)+ N, Z))},
(13)

and w′ denotes the Jacobian of w with respect to its first
argument (see [22] for proof).

Remark 1: Note that in the case of jointly Gaussian sources
and Gaussian channel(s) with matched source-channel dimen-
sions, linear mappings satisfy the necessary conditions of
optimality, however, they are highly suboptimal, see, e.g., [22].
As we will see, careful optimization obtains considerably better
mappings that are far from linear.

The necessary conditions of optimality for the distributed
coding setting can be derived similarly, and are omitted for
brevity, see [22]. Iteratively alternating between the imposition
of individual necessary conditions of optimality will succes-
sively decrease the Lagrangian cost until a stationary point is
reached. We refer to this method as “greedy descent”. There
is no reason to expect that a greedy descent algorithm will
converge to the globally optimal solution. In fact, experiments
show severe issues of local optima and strong dependence on
initialization of such methods. As a remedy, the noisy channel
relaxation (NCR) method of [23] was embedded in the algo-
rithm in [22], i.e., the descent method was run at gradually
decreasing levels of λ, wherein the result at each level serves as
initialization for the next level of λ (see [23] for details). While
such simple relaxations are effective in simple communication
settings, the networked problems we consider here require a
stronger optimization approach.

E. Asymptotically Achievable Limits

It is insightful to consider asymptotic bounds, which are
obtained at infinite delay, while keeping in mind that the prob-
lem we consider is delay limited. Let R(D) and C(P) denote
the source rate-distortion function and channel capacity, respec-
tively. According to Shannon’s source and channel coding
theorems, the source can be compressed to R(D) bits (per
source sample) at distortion level D, and that C(P) bits can
be transmitted over the channel (per channel use) with arbitrar-
ily low probability of error (see, e.g., [36]). The optimal coding
scheme is the tandem combination of the optimal source and
channel coding schemes, hence, by setting

R(D) = C(P), (14)

one obtains a lower bound on the distortion of any source-
channel coding scheme. For simplicity, we derive the expres-
sions for the “optimum performance theoretically attainable”
(OPTA) for Gaussian scalar source and noise. The channel
capacity with additive white Gaussian noise is given by

C(P) = 1

2
log

(
1+ P

σ 2
N

)
, (15)

where P is the transmission power and σ 2
N is the noise variance.
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For source-channel coding with decoder side information,
OPTA can be obtained by equating Wyner-Ziv rate distortion
function [37] to the channel capacity. The Wyner-Ziv rate dis-
tortion function of X , when Z serves as side information, and
(X, Z) ∼ N(0, RX,Z ) where RX,Z = σ 2

X

[
1 ρ

ρ 1

]
and σ 2

X , ρ are

the variance and correlation coefficient, respectively, with |ρ| ≤
1 is:

R(D) = max

(
0,

1

2
log

(1− ρ2)σ 2
X

D

)
. (16)

We plug (16) and (15) in (14) to obtain

DO PT A = (1− ρ2)σ 2
X(

1+ PT
σ 2

N

) . (17)

For quadratic Gaussian distributed source coding for

sources (X1, X2) ∼ N(0, RX1,X2) where RX1,X2 = σ 2
X

[
1 ρ

ρ 1

]
with |ρ| ≤ 1, the complete rate distortion region satisfies the
following inequalities [38]:

R1 ≥ 1

2
log+

(
1− ρ2 + ρ22−2R2

D1

)
(18)

R2 ≥ 1

2
log+

(
1− ρ2 + ρ22−2R1

D2

)
(19)

R1 + R2 ≥ 1

2
log+

(
(1− ρ2)β(D1, D2)

2D1 D2

)
(20)

where log+ x = max(0, log x) and

β(D1, D2) = 1+
√

1+ 4ρ2 D1 D2

(1− ρ2)2
. (21)

We set Ri = C(Pi ) for i = 1, 2, where C(P) is given in (15) to
obtain OPTA.

III. PROPOSED METHOD FOR SIDE INFORMATION

SETTING

A. Overview

In this section, we develop the DA based method for the opti-
mization of encoder and decoder mappings. Since the decoder
is given in closed form, the method focuses on optimizing
the encoder mapping. We first partition the input space of the
encoder into partition cells and assign a local model to each of
the cells. Next, the encoder output is made probabilistic by ran-
domizing the partitions, i.e., input points are assigned to each
local model according to some probability distribution. We then
propose an optimization process where the (random) encoder
is optimized (along with the decoder) while constraining the
Shannon entropy. By gradually reducing the entropy to 0, we
obtain the desired mappings.

B. Derivation of Proposed Method

We consider piecewise functions which approximate the
desired mappings by partitioning the space and matching a sim-

ple local model to each region. Piecewise functions consist of
two components: a space partition and a parametric local model
per partition cell. First, the source space R

m is partitioned into
K regions (cells) denoted Rm

k . Each cell Rm
k has an associated

function gk which is parametrized (affine, lattice, etc.) and the
parameter set is denoted by �k . Thus, the encoding function
can be written as

g(x) = gk(x) for x ∈ Rm
k and for k = 1, . . . ,K (22)

In (22), the selection of local model index k is deterministic
for a given realization of X , i.e., the output of the encoder only
depends on X . To derive a DA based approach, we introduce
a random variable, K , that corresponds to random selection of
index k. In other words, let the encoder randomly select the
local model index k when it receives an input x, according
to the value of a random variable that we call K . For a given
realization of X , the output of the encoder is now given in
probability as

g(x) = gk(x) with probability pK |X (k|x). (23)

The conditional probability pK |X (k|x) is referred to as asso-
ciation probability, in the sense that it represents the probability
of input point x belonging to cell Rm

k (thus, the source space
partition is now random). The probability distribution that we
introduce (and optimize) is pK |X (not the joint pX,K ) since
the input distribution is given in the problem statement and is
therefore fixed. The MSE cost and transmission power are still
calculated as in (1) and (2), though the expectation is now taken
over K in addition to what was done before. Let us now fix
�k and w, and consider optimizing (3) with respect to pK |X .
It is clear that the optimal pK |X will implement ’hard’ asso-
ciations, that is, every point x will be fully associated with
the local model that makes the minimum contribution to cost1.
Although this is desirable eventually, in order to avoid poor
local optima we impose and control the level of randomness,
i.e., we introduce a constraint on the randomness of the encoder,
which is measured by the Shannon entropy. The total entropy
of the encoder is given by H(X, K ) = H(X)+ H(K |X) and
since H(X) is constant (predetermined by the source), the
entropic quantity of interest is the conditional entropy H(K |X).
This is also intuitively justified in the sense that the random-
ness we introduced into the problem is precisely captured by
pK |X , hence can be measured and controlled by H(K |X). We
denote the randomness of the solution by H and define it as
H � H(K |X) where

H(K |X) = −E{log pK |X }. (24)

The problem is now recast as minimization of the expected
cost with respect to parameters of local models, association

1Therefore, the generalized search space of random encoders have the same
global minimum as the original problem.
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Fig. 2. The evolution of the encoder in the algorithm is demonstrated. The two models are shown by dotted lines and the sizes of dots are relative to the probability
association at that input point. The line in (d) is the deterministic encoder obtained. K = 2.

probabilities and decoder, subject to a constraint on the level
of randomness of the system, i.e.,

minimize
�1,...,�K,p(1|x),...,p(K|x),w

J,

subject to H ≥ H0,

where J is defined in (3) and H0 specifies the minimum
requirement on the entropy level. This constrained optimiza-
tion problem can be reformulated by introducing Lagrange
parameter T ∈ R

+ to obtain the Lagrangian

F = J − T (H − H0), (25)

to be minimized. There are two important extremal points of
this Lagrangian. First, for T →∞, the minimum F is obtained
by maximizing the entropy, which is achieved by uniform
association probabilities: pK |X (k|x) = 1/K for all k and x.
Consequently, all local models equally account for all points
and are identical once optimized, or effectively, there is a single
distinct local model. Secondly, in the limit T → 0, minimiz-
ing F corresponds to minimizing J directly, which produces a
deterministic encoder. This intuitive observation can be verified
by the expression for optimal pK |X (k|x) given in Section III-D.

Although DA is derived from information theoretic princi-
ples, it is motivated by and has strong analogies to anneal-
ing processes in statistical physics (see [34] for details). We
accordingly refer to the Lagrangian functional in (25) as
(Helmholtz) free energy, and Lagrange parameter T as “tem-
perature”.

C. Deterministic Annealing

The optimization method starts at a high value of T and
gradually lowers it while minimizing F at each step. At high
temperature, there is effectively a single distinct local model.
As the temperature is decreased, a bifurcation point is reached
where the current solution is no longer a minimum, so that

there exists a better solution with a higher number of dis-
tinct local models. Intuitively, at this temperature, the current
solution is a saddle point where multiple local models are coin-
cident (i.e., their parameters are same) and in order to move
to a better solution, it is necessary to perturb the local models.
Such bifurcations are referred to as “phase transitions” and the
corresponding temperatures are called “critical temperatures”2.

We present an example simulation in Figure 2 that illustrates
the basics of the method, including phase transitions. Here the
sources and channel are scalar, i.e., m = n = 1, gk are selected
as affine and K = 2. When T is large, there is a single dis-
tinct local model. As we lower T , the system goes through a
phase transition where the two local models split from each
other (after a slight perturbation). The corresponding value of T
is referred to as the first critical temperature. Note how entropy
(H ) is traded for reduction in cost (J ).

Mappings with more than 2 local models can be obtained by
starting with a larger K. However, a computationally more effi-
cient method that we employ here is as follows: We start with 1
local model and keep only the distinct local models, but dupli-
cate and perturb them at each temperature. The duplicates will
merge at every iteration until a critical temperature is reached,
and will split into distinct models at a phase transition.

Although our method is derived in the general, continuous
source and channel domain, in practical simulations we sample
the source and noise distributions to allow numerical computa-
tion of integrals. The sampling is not “inherent” to the derived
method and, in fact, can be adjusted during the algorithm run.
We emphasize that this is in contrast with prior quantizer design
based methods that are entirely formulated in a discrete setting.

The practical algorithm is initialized with a single local
model. Since T must be set higher than the first critical tem-
perature, we simply choose T large enough that during the first
couple of temperatures, duplicated local models merge back,

2We omit the derivation of critical temperatures in this paper, see [34] for
phase transition analysis in the general DA setting.
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i.e., no phase transitions are observed. As the temperature is
gradually lowered, we track the minimum, i.e., find the associ-
ation probabilities pK |X (k|x), local model parameters �k and
decoder w that minimize the Lagrangian F . As demonstrated,
the system will go through phase transitions during which the
number of local models, K, increases. We stop when T is near
0 and perform “zero entropy iteration”, i.e., associate every
source point with the “best” local model to obtain determinis-
tic encoder. We accordingly give a brief sketch of the practical
method in Algorithm 1. In Step 6, we employed an exponential
cooling schedule. Update equations for Step 3 are given in the
next section.

Algorithm 1 Proposed DA-Based Method

Inputs: Involved distributions, desired local model type, λ, α,
ε, 
F , Tmin, 
g .
Outputs: Optimized g,w.
Initialization: T = Tmax , K = 1, randomly chosen g1. Jold =
Jinitial .

1. Duplication:
For each gi , create an identical local model g j .

p(i |x)← p(i |x)
2 and p( j |x)← p(i |x)

2 .
K← 2K.

2. Perturbation:
For each parameter φk ∈ �k , φk ← φk + εR, where R is
standard Gaussian random variable.

3. Thermal Equilibrium:
Compute F and set Fold ← F .

3.1 Compute optimal w using (30).
3.2 Compute optimal p(k|x), ∀k using (26).
3.3 Optimize �k , ∀k using (28).
3.4 Compute F . If F−Fold

Fold
≤ 
F , go to Step 4, other-

wise Fold ← F and go to Step 3.1.

4. Model Size:
If d(�i ,� j ) < 
g , where d(·, ·) is euclidean distance,
remove g j and set p(i |x)← p(i |x)+ p( j |x), ∀i, j .
K← New model size.

5. Stopping:
Stop if T ≤ Tmin, otherwise go to Step 6.

6. Cooling:
T ← T ∗ α.
Go to Step 1.

D. Update Equations

The central part of the method is the minimization of free
energy (F) by iteratively updating the association probabilities,
local model parameters and decoders. The following theorem,
whose proof is presented in the Appendix, states the update
equations for association probabilities.

Theorem 1: At any temperature T , minimum free energy F
is achieved when association probabilities are in the form of
Gibbs distribution given as:

p(k|x) = e−Jk (x)/T∑
k′

e−Jk′ (x)/T
∀k, (26)

where Jk(x) is given by

Jk(x) = E{‖x − w(gk(x)+ N, Z)‖2} + λ‖gk(x)‖2. (27)

Remark 2: Theorem 1 is analogous to the principle of mini-
mal free energy in statistical physics. A fundamental principle
in statistical physics states that the minimum free energy is
achieved when the system is at thermal equilibrium, at which
point it is governed by Gibbs distribution.

The evolution of association probabilities, p(k|x), during the
annealing process can be observed from how (26) is chang-
ing with T . The following corollary confirms the intuitive
explanation we provided earlier.

Corollary 1: As T →∞ (at a high temperature) the sys-
tem is governed by uniform association probabilities and the
entropy is maximum. As T → 0, the associations become
deterministic and the entropy is 0.

The optimal local model parameters cannot be obtained in
closed form, hence we perform gradient descent search. A local
model parameter φk ∈ �k is updated according to

φk ← φk − ϕ
∂ F

∂φk
(28)

where ϕ is selected by line search and the gradient can be
obtained as

∂ F

∂φk
= ∂ J

∂φk
=

∫
x

fX (x)p(k|x)
∂ Jk(x)

∂φk
dx. (29)

The derivative ∂ Jk (x)
∂φk

is calculated numerically. The optimal
decoder can be derived similar to (11):

w( y, z) =
∫

x fX,Z(x, z)
∑
k

fN ( y − gk(x))p(k|x) dx∫
fX,Z(x, z)

∑
k

fN ( y − gk(x))p(k|x) dx
.

(30)

E. Design Complexity

Due to difficulties in estimating the time required for gra-
dient descent, exact comparison of computational complexity
of numerical optimization methods (including the method pre-
sented here and others referred to in Section II-D) is difficult
and depends on the actual source-channel distributions as well
as choice of various algorithm parameters. On the other hand,
optimization of parametrized mappings (e.g., in [13]) is faster,
but requires knowing the structure of a good solution, which
can be obtained by methods such as the one presented here.
In our experiments, the time required for DA was on the same
order as that of NCR, albeit with a higher constant. Thus, bet-
ter performance is obtained at the expense of slight increase in
complexity.

IV. METHOD FOR DISTRIBUTED CODING

Although the method described in the previous section can be
used for optimizing the distributed encoders separately (within
separate annealing processes), we found that such a method
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fails to avoid poor local minima as it fails to account for inter-
action between encoder optimizations. Instead, we develop a
method here that optimizes the (random) encoders and decoders
within a single annealing process. The resulting annealing
method is a direct extension of the previous one, albeit with
higher complexity due to the distributed nature of the problem.

We have two independent sets of partitions of input source
space: K1 cells represented by Rm

k1
and K2 cells represented by

Rm
k2

. We define both encoders in this setting as

gi (xi ) = gki
(xi ) for xi ∈ R

m
ki

, i = 1, 2. (31)

Following the same procedure of randomization, we define ran-
dom variables K1 and K2 along with association probabilities:

p(ki |xi ) � P{xi ∈ R
m
ki
}, ∀ki , xi , for i = 1, 2. (32)

The cost is to be minimized subject to the constraint on the
joint entropy of the system. Noting that K1 ↔ X1 ↔ X2 ↔ K2
form a Markov chain by construction, we express the joint
entropy as

H(X1, K1, X2, K2) = H(X1, X2)+H(K1|X1)+ H(K2|X2).

(33)

Since H(X1, X2) is a constant determined by the sources, we
define H � H(K1|X1)+ H(K2|X2) where

H(Ki |X i ) = E{log p(Ki |X i )} for i = 1, 2, (34)

and the free energy of the system is given by (25).
The algorithm sketch is similar to the side information setting

and is not reproduced here. Since we optimize both encoders
within the same annealing process, the same operations in the
Algorithm are performed for both encoders, sequentially. The
following theorem presents the optimal association probabili-
ties for the distributed setting. The proof follows from the steps
in the proof of Theorem 1 and omitted for brevity.

Theorem 2: At any temperature, minimum free energy (F)
is achieved when the system is governed by Gibbs distribution
given as:

p(ki |xi ) = e−Jki (xi )/T∑
k′i

e
−Jk′i (xi )/T

for i = 1, 2 (35)

where

Jki (xi ) = E{‖X1 − X̂1‖2 + η‖X2 − X̂2‖2|X i = xi , Ki = ki }
+ λi g2

ki
(xi ) (36)

if the cost is defined as in (4), and

Jki (xi ) = E{‖γ (X1, X2)− w(Y 1, Y 2)‖2 |X i = xi , Ki = ki }
+ λi g2

ki
(xi ) (37)

if the cost is defined as in (5).
The parameters of local models can be optimized through

gradient descent search. Optimal decoding is achieved similarly

as X̂ i = E{X i | y1, y2} for i = 1, 2 for first type of objective,
and w( y1, y2) = E{γ (X1, X2)| y1, y2} for the second type.
Both expressions can be written in terms of known quantities
similar to that in (11).

V. EXPERIMENTAL RESULTS

While the proposed algorithm is general and directly appli-
cable to any choice of source and channel dimensions, for
conciseness of the results section, we assume that sources
and channels are scalar. In this case, the encoder mapping is
denoted as g : R→ R and the local model functions gk are
selected as affine. In principle, the set of gk can be chosen
from any parametric model. Choosing a more complex model,
such as a higher order polynomial, can potentially improve the
performance of the algorithm, albeit with increased computa-
tional complexity. For the exponential cooling schedule, we
set α = 0.95, i.e., T ← T ∗ 0.95. The performance of the pro-
posed method is assessed by comparisons to the optimal affine
solution, greedy method and NCR-based method developed in
[22], as well as OPTA (for reference only, as OPTA requires
infinite delay). For the NCR based method, we decrease λ

(in distributed coding, we decrease λ1 and λ2 simultaneously)
exponentially as λnew = λold ∗ 0.8 in 50 steps to the desired
value.

The noise signals in all examples are chosen as independent
zero-mean Gaussians with unit variance, i.e., N ∼ N(0, 1),
N1 ∼ N(0, 1), N2 ∼ N(0, 1). For numerical computations, we
sample the source and noise distributions on a uniform grid with
spacing 
 = 0.02. We also impose bounded support (−5σ to
+5σ ), i.e., we neglect tails of infinite support distributions in
the examples.

A. Side Information Setting

We first give examples for the Gaussian case, where the
source and side information are jointly Gaussian, distributed

according to N(μ, R) where μ = [0, 0], R =
[

1 ρ

ρ 1

]
, and

|ρ| < 1 is the correlation coefficient between source and side
information. We define SNR = 10 log10(1/D) and CSNR =
10 log10(P(g)).

Example mappings are given in Figure 3. We first note that
the central characteristics observed in digital Wyner-Ziv map-
pings are captured by analog mappings as noted before (see,
e.g., [21], [22]), in the sense of many-to-one mappings, where
multiple source intervals are mapped to the same channel inter-
val. We refer to each one-to-one section in these mappings as
a “bin”, in Figure 3a there are 5 bins in the interval shown (the
meaning of bin here is different than in digital Wyner-Ziv map-
pings). The uncertainty about the source interval is resolved
(significantly decreased) by the decoder using the side infor-
mation. Since all variables are Gaussian and distortion measure
is MSE, it is intuitively intriguing to investigate whether the
optimal mappings have any parametric form or structure to be
exploited in the design stage. For example, since in the absence
of decoder side information optimal mappings are well known
to be linear, one can expect to see linear mappings in each bin.
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Fig. 3. Example encoder mappings, generated by DA, for the decoder side
information setting, jointly Gaussian source and side information.

In fact, such parametric form was explicitly assumed in [19],
and it was reported the optimized parametric mappings perform
very close to the results obtained via NCR in [22]. Our numer-
ical results demonstrate that each bin is non-linear as some
nonlinearity can be observed especially near the ends of each
bin, as opposed to the conjecture in [22].

From Figure 3 we see how the width of bins depends on the
correlation between the source and side information. It can be
seen that at higher correlation the bins are narrower. This is
intuitively expected since, as the correlation increases, so does
the benefit of side information in terms of distinguishing dif-
ferent bins. To exploit this capability, the encoder narrows the
bins, which in turn reduces the power E{g2(X1)}.

To illustrate the improvement of DA over NCR in the encod-
ing mappings themselves, we present two mappings obtained
by NCR in Figure 4. We emphasize that the performance of
NCR depends on initial mappings, initial noise level and the
noise-relaxation schedule. This dependence is illustrated in
Figure 4, where in one case the shape of bins are different then
those in DA and sub-optimal, and in the other the points of
discontinuity are not optimal.

Fig. 4. Two results by NCR for side information setting. In (a) the bins do not
have the optimal shape that was obtained by DA and in (b) the discontinuity
points are not optimal.

We also give an example with a different source distribution,
Gaussian mixture, in Figure 5:

(X1, X2) ∼
(

1

2
N(μ1, R)+ 1

2
N(μ2, R)

)
(38)

where μ1 = [−3,−3], μ2 = [3, 3] and R =
[

1 0.95
0.95 1

]
. This

distribution has two Gaussian “nodes” centered far from each
other at x = −3 and x = 3. From an intuitive point of view,
the optimum encoder can be viewed as two Wyner-Ziv like
encoders, occupying the negative and positive halves of real line
and both centered at the node centers. It is clear that for several
source and channel distributions, optimal encoding mappings
are many-to-one, i.e., this property is not unique to the Gaussian
distribution.

The comparative performance results for different optimiza-
tion techniques is given in Figure 6 for correlation coefficient
ρ = 0.99. Since NCR performance depends on the initial con-
ditions, we ran the NCR algorithm several times with differ-
ent conditions and pick the mappings with best performance.
Results from the greedy method are also presented in order
to illustrate the abundance of locally optimum points and the
difficulty of the optimization problem. Note that the proposed
method is independent of the initialization and only run once.
We also present the performance of OPTA as benchmark while
noting that it is asymptotic and may require infinite delay. The
performance of linear encoder and decoder is plotted as well,
since it is also a local minimum (see Remark 1). It is important
to note that the linear solution performs significantly worse than
the non-linear mappings obtained.
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Fig. 5. Example encoder mappings, generated by DA, for Gaussian mixture
distribution, side information setting.

Fig. 6. The performance comparison for the side information setting, the pro-
posed method versus the noisy relaxation (NCR), greedy optimization and the
linear mappings. ρ = 0.99.

B. Distributed Coding Setting

In these experiments the sources are jointly Gaussian with
unit variance and their correlation coefficient is denoted by ρ.
We first analyze the case of individual reconstructions, where
the cost is as defined in (4). The weighing coefficient η in (4)
is 1.

The encoding mappings observed are many-to-one, where an
example is given in Figure 7a to gain intuition into the work-
ings of these coding schemes. From Figure 7a, where both
encoders are plotted together, we see that in different source
intervals, one of the mappings is many-to-one while the other
one is one-to-one (usually linear). For instance, in the interval
X ∈ [−0.3, 0.5], g1 is approximately linear while g2 is many-
to-one. Intuitively, in each of these intervals, one channel is

used as side information to reduce the uncertainty about the
interval of other source.

Next, we analyze how the channel space is filled. We plot g1
vs. g2 in Figure 7b, which would be the channel space map-
ping if the two sources were fully correlated (ρ = 1). In case of
lower correlation, a line widens into a strip (see figures and dis-
cussion in [13]), however the plot in Figure 7b is sufficient for
demonstration. This mapping has the same characteristics with
that of Archimedean spirals used in literature (example plotted
in Figure 7c), in the sense that most likely source values are
mapped to the area around origin and the mapping continues
outwards in a circular fashion, to fill the channel space while
preserving transmission power. In fact, spirals are suggested
since they have this characteristic. Although our mappings have
the same characteristic, they are far different from a spiral.

Spiral-like channel filling may sometimes be sub-optimal.
The channel space can be filled in a different way, especially
in case of unequal transmission powers. In Figure 8, we pro-
vide such mappings where we still see the same characteristics
mentioned earlier (both sources acting as side information in
different intervals), but the channel space is filled differently.
Other examples can be found in literature as well, see, e.g.,
[12], [13].

In [13], the authors noted that for 0 < ρ < 0.95, their
structured solutions does not improve over linear solutions at
high CSNR. We provide an example of non-linear scheme in
Figure 9 for ρ = 0.9 that improves over linear solution. For
lower correlations our method produces linear solutions. Based
on these experiments, we reach to a similar conclusion that opti-
mal mappings are non-linear only at high correlation - albeit our
method offers non-linear gains over a larger range of ρ values.

Performance comparison of different numerical optimization
techniques (DA, NCR and greedy descent with random initial-
ization) for total power allocation case (λ1 = λ2) is provided
in Figure 10a where we define SNR = 10 log10(2/D) (average
distortion in dB) and CSNR = 10 log10((P(g1)+ P(g2))/2)

(average power in dB). We note that since individual powers
are not constrained, different transmission powers are allowed
in this comparison for all methods.

We also provide comparison to other coding schemes found
in the literature. In [13], authors analyze parametric mappings
of two types, spirals and sawtooth mappings, in distributed
coding setting and compare to distributed quantizer scheme
analyzed in [12]. In their comparison they use same power allo-
cation for both encoders, as opposed to a total power allocation
we consider. We therefore obtain solutions that allocate same
power to both encoders. In Figure 10b, we provide comparison
with our results to the ones reported in [13] for the same setting.
As expected, mappings optimized in function space perform
better than parametric mappings which only approximately
model optimal mappings as demonstrated in Figure 7.

We finally take a look at the function computation prob-
lem for which the cost is given in (5). As a test case, we
employed the difference function, γ = X1 − X2. Encoder map-
pings optimized with DA are given in Figure 11a. Both sources
are mapped in many-to-one fashion with no way to resolve
the uncertainty about the source interval. This is unlike pre-
vious mappings, where the uncertainty about source interval is
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Fig. 7. Example encoding scheme for distributed coding scheme with ρ = 0.999. In (a), g1 and g2 are plotted together. In (b) we see how channel space is filled.
In (c) a typical Archimedean spiral used in literature is shown.

Fig. 8. An example, obtained by DA, with different transmission power con-
straints on encoders. (a) Both encoders are plotted together. (b) Channel space
filling is shown. Although similar characteristics are observed, the channel
space is filled differently.

Fig. 9. Non-linear solution that improves over linear for ρ = 0.9. CSNR =
29 dB, SNR = 29.82 dB. Linear solution at same CSNR achieves SNR =
29.60 dB.

resolved by side information (in the distributed coding case, the
other source would act as side information, at least locally).
In the case of difference function, the actual values are not

Fig. 10. (a) Performance comparison of different numerical optimization meth-
ods for distributed coding setting with the constraint on total transmission
power. ρ = 0.99. (b) Performance comparison for distributed coding setting
with other approached found in literature. Optimized S-K refers to performance
of structured mappings in [13] (spirals and sawtooth mappings) and 5-bit DQ
is from [12]. 5-bit DQ is optimized for 18 dB CSNR. ρ = 0.999.

needed, thus, both sources are mapped in many-to-one fashion.
Nevertheless, the decoder is able to estimate the difference of
sources accurately.

We give performance comparison in Table I where CSNRi =
10 log10(P(gi )) for i = 1, 2 and SNR = 10 log10(1/D). DA
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Fig. 11. Example solutions obtained for function computation problem, where
γ = X1 − X2. (a) DA result (b) NCR result. CSNR and SNR values are in
Table I.

TABLE I
PERFORMANCE OF OBTAINED MAPPINGS FOR DIFFERENCE FUNCTION

achieves 10 dB higher SNR than the linear solution with the
same power allocation, whereas the linear solution that achieves
the same SNR requires 9 dB more power for each channel.
Although the improvements depend on the problem parameters,
these results nevertheless demonstrate that there are significant
gains in utilizing non-linear encoder functions instead of linear
ones. DA performance is better than NCR as well, as the shape
of encoders are better optimized as can be seen in comparison
in Figure 11.

VI. CONCLUSIONS

In this paper, we studied the problem of finding globally opti-
mal encoder and decoder pairs in zero delay source-channel
coding, focusing on two basic network settings. Since the cost
surface is riddled with local optima, we developed a method
based on the deterministic annealing to approach global opti-
mality. The numerical results show that, by using carefully
optimized non-linear (and in many cases many-to-one) map-
pings, significant gains can be obtained over linear solutions,
which are optimal in point-to-point settings (for the specific
case of Gaussians under MSE). Simulation results demon-
strate the performance of the proposed algorithm, which con-
sistently outperform greedy optimization methods and noisy
channel relaxation, as well as the previous approaches found in
literature.

APPENDIX

PROOF OF THEOREM 1

We write the Lagrangian cost in (25) as

F =
∑

k

∫
x

Jk(x)p(k|x) fX (x)dx − λPE

+ T
∑

k

∫
x

p(k|x) log p(k|x) fX (x)dx + T H0, (39)

where Jk(x) is given in (27). From (39) it can be seen that F is
convex in p(k|x), since first term is linear and second term is
convex in p(k|x). To find the minimum, we set ∇p(k|x)F = 0:

Jk(x)+ T log p(k|x)+ T = 0, (40)

which yields

p(k|x) = Ce−(Jk (x)−T )/T . (41)

The normalizing factor C is to ensure that∑
k

p(k|x) = 1. (42)

Plugging (41) in (42), we have

C = 1∑
k′

e−(Jk′ (x)−T )/T
. (43)

Plugging (43) in (41) yields (26).
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