
SPEECH CODING WITH AN ANALYSIS-BY-SYNTHESIS SINUSOIDAL MODEL
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ABSTRACT

We introduce a general and powerful approach to sinusoidal
modeling of speech wherein a closed-loop Analysis-by-Synthesis
(AbS) technique sequentially extracts the parameters for each si-
nusoidal component. Low bit-rate speech coding is achieved by
efficiently constraining the allowed frequencies of sinusoidal com-
ponents into sets of frequency intervals or bins. In conjunction
with the closed-loop analysis, the constrained frequency regions
allow us to efficiently vector quantize the frequency information
in each frame. In voiced frames, two sets of frequency vectors are
generated: one for harmonically related components and the other
for non-harmonically related components of the voiced segment.
In transition frames, a vector of nonuniformly spaced frequencies
is selected from a frequency codebook using frequency bin vector
quantization (FBVQ) to represent the frequency domain informa-
tion. The effectiveness of the coding scheme is enhanced by ex-
ploiting the critical band concept of auditory perception in defining
the frequency bins. In transition segments, the sinusoidal phases
are modeled and coded. Subjective tests with a partially quantized
model indicate that, for a target rate of 4 kbps, the coder quality
exceeds that of the G.729 standard at 8 kbps.

1. INTRODUCTION

It is well-known that, code-excited linear predictive(CELP) cod-
ing is able to achieve toll or nearly toll quality speech at rates
above 5 kbps. However, below 5 kbps, the speech quality of CELP
coders degrades due to its inability to accurately match the speech
waveform with the inadequate number of excitation bits available
for the frame. On the other hand, parametric coders such as the
sinusoidal-transform coder(STC) [1], the waveform-interpolative
(WI) coder [2], and the multiband-excitation(MBE) coder [3] can
produce good quality speech at rates as low as 2 kbps. These
coders do not achieve toll quality and lack robustness to different
speakers. We believe these deficiencies are partly caused by the
open-loop character of the sinusoidal coders and partly by their
inability to model transition segments such as voicing onsets and
plosives.
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In this paper, we introduce an Analysis by Synthesis (AbS) si-
nusoidal modeling technique for low bit-rate speech coding wherein
the parameters for each sinusoidal component are sequentially ex-
tracted by a closed-loop analysis. The sinusoidal modeling of
the speech residual is performed within the general framework of
matching pursuits [4, 5] with a dictionary of sinusoids. The fre-
quency range is restricted to sets of frequency intervals or bins,
which in conjunction with the closed-loop analysis allow us to map
the frequencies of the sinusoids into a frequency vector that is effi-
ciently quantized. In voiced frames, two sets of frequency vectors
are generated: one of them represents harmonically related and the
other one non-harmonically related components of the voiced seg-
ment. This approach eliminates the need for voicing information
that is difficult to estimate correctly and to quantize at low bit rates.
In transition frames, a vector of nonuniformly spaced frequencies
is selected from a frequency codebook using frequency bin vector
quantization (FBVQ) to represent the frequency domain informa-
tion. Our use of FBVQ with closed-loop searching combined with
modeling and coding of the perceptually important phase infor-
mation together contribute to a significant improvement of speech
quality in transition frames. Subjective tests indicate that a par-
tially quantized model with a target rate of 4 kbps has quality ex-
ceeding the G.729 standard at 8 kbps.

2. ANALYSIS/SYNTHESIS

2.1. Synthesis Model

In our model, each frame of the linear prediction (LP) residual is
represented as a sum of sinusoids which are weighted by a magni-
tude envelope �k[n]. Thus, for the kth frame, we have
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The parameter set for each frame consists of an amplitude vector
A = fAig, a frequency vector ! = f!ig, and a phase vector � =

f�ig. The synthesized frames are combined by using overlap-add
to obtain the reconstructed LP residual, ŝ[n]
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where Ns is the synthesis frame size. The synthesis window obeys
the constraint X

k
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2.2. Analysis with Matching Pursuits

To effectively represent the LP residual as a sum of sinusoids, we
adopt the general approach of matching pursuits [5]. This is an it-
erative algorithm, which represents a given signal in terms of a lin-
ear combination of a set of waveforms, selected sequentially from
a redundant dictionary whose size is generally much larger than
the number of terms needed for an adequate representation. In our
case, the dictionary D is a set of magnitude envelope weighted co-
sine waveforms as described in Section 2.1. The frequencies f!jg
of the cosine waveforms forming the dictionary are defined by us-
ing a fine grid of L points (L � M ) covering the spectral range
of interest and given by !j = j�=(L�1) for j = 0; 1; : : : ; L�1.
The frequencies, amplitudes, and phases for each term in the rep-
resentation are parameters to be determined by the modeling algo-
rithm. The sum of sinusoids is weighted by a magnitude envelope
�[n], to track speech energy variations across the frame. Later we
describe how this envelope is obtained and efficiently quantized.
In each iteration, a new sinusoidal term is added to the model,
then the modeling error waveform (error residual) is formed. The
parameters for each sinusoid is optimized to minimize a weighted
measure of the error residual energy. Thus, the error residual after
m iterations, rm[n], is given by

rm[n] = rm�1[n]� �[n]Am cos(!mn+ �m) (4)
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where for simplicity the frame index k is omitted.
At the m

th iteration, the algorithm will search for the fre-
quency point !m, which together with its optimal amplitude Am
and optimal phase �m minimizes the weighted energy Em of the
error residual given by

Em =
X
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Wa[n]frm�1[n]� �[n]Am cos(!mn+ �m)g2 (5)

where N denotes the time span of the current analysis frame. The
analysis window Wa[n] serves as a weighting in equation 5 and
enhances the representation of the region in which ŝk[n] has the
dominant contribution to ŝ[n].

While this algorithm is able to synthesize high quality speech,
it has two major drawbacks. First, the computational complex-
ity is very high, since at each iteration it eliminates only one fre-
quency point and searches through essentially the entire grid of
finely-spaced frequencies. Second, the resulting set of frequen-
cies, representing the frame, are irregularly spaced and therefore
are difficult to quantize at low bit rates.

These two problems motivated us to develop a novel dynamic
dictionary matching pursuits algorithm based on a frequency bin
modelfor structuring and simplifying the allowed set of sinusoidal
component frequencies in the dictionary. We refer to this set of
frequencies as the frequency spaceof the dictionary.

2.3. Analysis with Dynamic Dictionary Matching Pursuits
using a Frequency Bin Model

The dynamic dictionary matching pursuits is a modified matching
pursuits algorithm, in which the dictionary is updated at each iter-
ation by removing a group of dictionary elements. The complexity

of this algorithm is substantially less than that of the conventional
matching pursuits algorithm since the size of the dictionary grad-
ually decreases with successive iterations.

The frequency bin structure represents the frequency space of
allowed cosine waveforms as a set of non-overlapping frequency
intervals or bins where each bin consists of the set of frequency
grid points contained in that interval. Since only one frequency
within a given bin will be used in the decoder’s synthesis proce-
dure, the width of each bin is chosen as large as possible while
satisfying the rule that the perceptual difference between the cen-
ter frequency and any other frequency point in the bin should be
insignificant when using the model in equation 1. With this re-
quirement the widths of the bins must increase with increasing
frequency, since the human auditory system’s frequency resolution
decreases as the frequency increases. This rule further guarantees
that any frequency point in a bin can be quantized to that bin’s
center frequency without sacrificing perceptual information.

The frequency bin model combines with the dynamic dictio-
nary matching pursuits as follows. At each iteration, the analysis
procedure will choose the best matching frequency point from the
frequency space (determined by the current set of bins); then the
dictionary is updated by removing the entire bin corresponding to
that frequency point. After all the bins are eliminated, the analysis
will stop. Therefore, the number of iterations will be equal to the
number of bins in the frequency space that forms the initial dic-
tionary. This search process determines a set of sinusoids whose
frequencies are still unquantized. For encoding, these frequency
points are quantized to the center frequencies of their respective
bins.

Specifically, for a given magnitude envelope �[n], at the mth

iteration, given the current dictionaryDm�1, and the current resid-
ual rm�1[n], we search the frequency space for the frequency
point !m that minimizes equation 5. Then we update the residual
by using equation 4 and finally update the dictionary, Dm�1 !
Dm, by removing the bin in which !m resides from Dm�1.

The analysis procedure described in this section assumes a
given dictionary with an associated set of frequency bins. The
next section applies this analysis to search a family of dictionaries,
represented by a vector quantization codebook.

3. FREQUENCY BIN VECTOR QUANTIZATION

3.1. Quantization Method

To efficiently quantize the set of frequencies needed for the sinu-
soidal representation of the LP residual in transition frames, we
introduce Frequency Bin Vector Quantization (FBVQ). In FBVQ,
encoding is based on a pair of codebooks, a frequency codebook
CF with elements cj and a bin width codebook B with elements
�j , where the vector cj is an ordered set of M frequency values
and �j is an ordered set of corresponding bin widths. From the
j
th pair of codevectors we can generate a dictionary of sinusoids
Dj
0
, whose frequency space consists of all frequency grid points

in the bins that are centered at the elements of cj and have widths
given by the bin widths vector�j .

Figure 1 shows a block diagram of the AbS analysis proce-
dure based on FBVQ. In the figure M is the dimension of the
frequency codevector. At the mth iteration corresponding to the
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Figure 1: Block diagram of FBVQ

j
th frequency and bin width codevectors, the best matching dic-

tionary element is denoted by djm. Note that the vector dimension
M is also the number of iterations, therefore Ej

M denotes the fi-
nal residual energy corresponding to the dictionary generated by
the jth pair of codevectors, cj and �j . The magnitude envelope
�[n] reduces the effect of energy variations on the estimation of
the sinusoidal parameters. Later one possible approach to obtain
and quantize magnitude envelope is described. The analysis pro-
cedure in conjunction with FBVQ finds the index of the codebook
entry that best matches the signal perceptually, and calculates the
corresponding amplitude and phase vectors. FBVQ will use the
analysis to select the codebook index, whose corresponding dictio-
nary yields the minimum residual energy Ej

M . In this context, the
analysis will act as a method for computing the metric for Nearest
Neighbor (NN) Condition of FBVQ.

3.2. Codebook Design Issues

An effective design is needed for the frequency and bin width
codebooks. A possible approach for selecting the frequency code-
vector cj is to uniformly sample the conventional frequency scale,
but this would not account for the non-uniform frequency resolu-
tion of the human auditory system. A better approach is to sam-
ple the equivalent rectangular bandwidth (ERB) rate scale [6] uni-
formly, since ERB-rate scale, like human auditory system, has a
decreasing frequency resolution with increasing frequency.

The second design issue is the choice of the bin widths vec-
tor �j . At low bit rates, we would like to model the input signal
by using as few cosine waveforms as possible, since the number of
parameters to encode is proportional to the number of cosine wave-
forms. Experimental evidence shows that we can synthesize good
quality voiced frames by using a number of cosines equal to the
number of pitch harmonics and good quality transition frames by
20-30 cosines. Once the number of cosines is fixed, the number of
bins will be the same, since the analysis generates a single cosine
corresponding to each bin. Given the number of bins for a given
type of frame, the size of the dictionary will be proportional to the
bin widths. In this case �j determines the trade-off between the
modeling error caused by the reduction of the frequency space into
bins and the quantization error caused by mapping the frequency
point selected from each bin to that bin’s center frequency. If we
choose f�jkg’s too small, the quantization error will be negligible
which means the reconstructed signal in the analyzer will be very
similar to the one in the synthesizer, but the resulting small dictio-
nary may not accurately model the input waveform. On the other
hand, choosing f�jkg’s too large will lead to a large dictionary
which can model the input waveform well, so the reconstructed

signal in the analyzer will be of high quality, but the reconstructed
signal in the synthesizer will suffer from large quantization errors.
A good trade-off can be obtained by increasing �jk up to the point
where the quantization error is still perceptually insignificant. In
general �jk will increase with frequency, since the human audi-
tory system is more tolerable to quantization errors at higher fre-
quencies.

4. VOICED, TRANSITION, AND UNVOICED
ANALYSIS/SYNTHESIS

4.1. Voiced/Unvoiced Analysis and Synthesis

To efficiently model speech, the phonetic character of individual
frames should be considered. For voiced frames, we use two fre-
quency vectors to capture the frequency domain information. One
of them is composed of harmonically related frequencies !h and
represents the periodic part; the other one is composed of non-
harmonically related frequencies !nh and represents the aperiodic
part of the voiced segment. The elements of !h are multiples of
!o = 2�=po, where po is the pitch period. The elements of !nh
are obtained by uniformly sampling the portion of the ERB-rate
scale above 1 kHz. Typical voiced frames do not have large en-
ergy variations across the frame, therefore the magnitude envelope
is set to �[n] = 1.

The voiced residual is modeled as a sum of the harmonic and
the non-harmonic models, which have Dh and Dnh respectively
as their dictionaries. The initial dictionary D0 = Dh corresponds
to harmonic analysis. Harmonic analysis generates the frequency
!p, amplitude Ap, and phase �p vectors representing the peri-
odic part. In harmonic analysis, the frequency space of dictio-
nary Dh consists of bins which are centered at the pitch harmon-
ics. The frequency points generated during analysis do not have
to be exact multiples of !o, enabling harmonic analysis to capture
periodic components even in frames that have changing pitch pe-
riod. Therefore the leakage from periodic to aperiodic part will
be reduced, resulting in an error residual of negligible periodicity,
which is suitable as an input for non-harmonic analysis. After K
iterations, (K being the number of pitch harmonics, K = bpo=2c)
the dictionary is set to DK = Dnh for non-harmonic analysis.
Non-harmonic analysis works on the error residual generated by
the harmonic analysis. It generates the frequency !ap, amplitude
Aap, and phase �ap vectors representing the aperiodic part. The
frequency space of dictionary Dnh consists of bins which have the
elements of !nh as their center frequencies.

For the synthesis of the periodic part, a cubic phase model [1]
for the zero dispersion phase is used with the frequency !h, and
the quantized amplitude Âp vectors. The linear phase is formed by
keeping track of successive onset times generated by the succes-
sion of pitch periods that are available at the decoder [7]. The ape-
riodic part is synthesized by applying uniformly distributed ran-
dom phases to cosines having the frequency !nh, and the quan-
tized amplitude Âap vectors.

Unvoiced analysis is the same as harmonic analysis with bins
located at multiples of 100 Hz, with the exception that a magni-
tude envelope is used as in the case of transition frames. The syn-
thesizer applies uniformly distributed random phase to each fre-
quency component.
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Figure 2: Sample codevectors and their bin structure

4.2. Transition Analysis and Synthesis

Transition frames are represented by a frequency vector !̂t se-
lected from a frequency codebook CF by using FBVQ, and its
corresponding amplitude At and phase �t vectors. The code-
book has 8 codevectors which are obtained by uniformly sampling
the ERB-rate scale. Two codevectors and their corresponding fre-
quency bins structure are illustrated in Figure 2. The magnitude
envelope �[n] is formed by linearly interpolating the magnitude
vector, � = f�ig

�i =

sX
j

ajs
2[lp + iD � j] i = 0; 1; : : : (6)

where D is the downsampling factor, and lp is the peak energy
position used to align downsampling operation with the largest en-
ergy peak. This alignment alleviates the smearing of magnitude
envelope caused by downsampling and linear interpolation.

The quantized magnitude envelope, �̂[n] is formed by linearly
interpolating the quantized magnitude vector �̂, whose elements
have time locations aligned with lp. The peak energy position es-
timate lp is scalar quantized using 4 bits. The magnitude vector �
is quantized using a gain-shape decomposition. Five bits are used
to quantize the shape of the magnitude vector.

At the decoder, a cubic phase model with the frequency !̂t,
the quantized phase �̂t, and the quantized amplitude Ât vectors
is used to synthesize transition frames.

5. PHASE QUANTIZATION

Two different procedures are used to quantize transition phase vec-
tor�t and the procedure having the lower closed-loop distortion is
selected. The first procedure decomposes the transition phase into
a linear phase and dispersion phase as follows:

�t = !tn0 + t (7)

where n0 represents the linear component and  t the dispersion
phase. The dispersion phase vector  t is quantized using a mean-
shape decomposition. The mean and shape phase components are
quantized jointly by using a uniform scalar quantizer for the mean
and a codebook (generated as uniformly distributed random vec-
tors of narrow dynamic range) for the shape. The second procedure
uses a codebook of uniformly distributed random phases for quan-
tization. The transition phase vector is quantized using 10 bits,
where one of the bits is used to distinguish between procedures.

6. BIT ALLOCATION

The bit allocation for each type of speech frame is given in Ta-
ble 1, however in our current simulation, the LPC and amplitude
parameters have not yet been quantized. The frame size is 20 ms.

Parameter Transition Voiced Unvoiced

LPC 18 20 18
Amplitude 15 43 39

Phase 2� 10 = 20 0 0
Frequency 2� 3 = 6 0 0

Pitch 0 2� 7 = 14 0
Envelope 2� 5 = 10 0 2� 10 = 20

Peak Eng. Pos. 2� 4 = 8 0 0
Classifier 3 3 3

Total 80 80 80
Bit-rate 4kbps 4kbps 4kbps

Table 1: Bit allocation

7. SUBJECTIVE RESULTS

We have conducted a preference listening test to compare the sub-
jective performance of the proposed AbS coder with the G.729
standard. The test data included 16 MIRS speech sentences, 8
from female speakers and 8 from male speakers. Twelve listeners
participated in the test. The test results presented in Table 2, indi-
cate that the subjective quality of the proposed partially quantized
coder exceeds that of G.729 at 8kbps.

Speakers AbS coder G.729 Same

Female 42.71% 32.29% 25.00%
Male 52.08% 19.79% 28.13%

Total 47.40% 26.04% 26.56%

Table 2: Preference test results
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