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Abstract—We propose two quantization techniques for im-
proving the bit-rate scalability of compression systems that
optimize a weighted squared error (WSE) distortion metric. We
show that quantization of the base-layer reconstruction error
using entropy-coded scalar quantizers is suboptimal for the WSE
metric. By considering the compandor representation of the quan-
tizer, we demonstrate that asymptotic (high resolution) optimal
scalability in the operational rate-distortion sense is achievable
by quantizing the reconstruction error in the compandor’s com-
panded domain. We then fundamentally extend this work to the
low-rate case by the use of enhancement-layer quantization which
is conditional on the base-layer information. In the practically
important case that the source is well modeled as a Laplacian
process, we show that such conditional coding is implementable
by only two distinct switchable quantizers. Conditional coding
leads to substantial improvement over the companded scalable
quantization scheme introduced in the first part, which itself sig-
nificantly outperforms standard techniques. Simulation results are
presented for synthetic memoryless Laplacian sources with -law
companding, and for real-world audio signals in conjunction with
MPEG AAC. Using the objective noise-mask ratio (NMR) metric,
the proposed approaches were found to result in bit-rate savings
of a factor of 2 to 3 when implemented within the scalable MPEG
AAC. Moreover, the four-layer scalable coder consisting of 16-kb/s
layers achieves performance close to that of the 64-kb/s nonscal-
able coder on the standard test database of 44.1-kHz audio.

Index Terms—AAC, audio coding, bit-rate scalability, embedded
transmission, quantization.

I. INTRODUCTION

THE problem of efficient bit-rate scalability, or embedded
coding, is an important one. Bit-rate scalability is a central

requirement in many audio compression systems aimed at wire-
less and networking applications. A scalable bit stream allows
the decoder to produce a coarse reconstruction if only a portion
of the bit stream is received, and to improve the quality as more
of the total bit stream is made available. Scalability is especially
important in applications such as digital audio broadcasting and
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multicast audio, which require simultaneous transmission over
multiple channels of differing capacity. Further, a scalable bit
stream provides robustness to packet loss for transmission over
packet networks (e.g., over the Internet). A recent standard for
scalable audio coding is MPEG-4 [1] which performs multi-
layer coding [2] using Advanced Audio Coding (AAC) [3]–[6]
modules.

Current state-of-the-art audio coders including AAC, AC3
[7], PAC [8], and ATRAC [9] rely on exploiting perceptual
irrelevancy via quantization noise shaping [10]–[12]. Hence,
perceptually motivated objective metrics for audio differ from
the simple mean squared error (mse) distortion criterion. For
example, variants of the noise-mask ratio (NMR) [13]–[16], a
weighted squared error (WSE) measure, are widely employed
as the distortion metric for encoder optimization. Quantiza-
tion in perceptual audio coders is typically performed using
a (nonuniform) scalar quantizer (SQ) whose output is en-
tropy-coded, since it allows for simultaneous exploitation of
perceptual and statistical source redundancies. Entropy-coded
SQ finds a wide range of applications in compression of other
source signals as well [17], [18].

A major objection to incorporating bit-rate scalability within
existing coders is the resulting loss in performance relative to
nonscalable coding. In the most common approach to scalable
coding, the “multilayer” approach, the base-layer coder pro-
duces the core bit stream and the enhancement layer refines
the reconstruction quality by quantizing the base-layer recon-
struction error. Conventional scalable systems that minimize a
non-mse measure underperform due to two main reasons: 1)
each encoding layer fails to fully account for the information
conveyed by the preceding layer by operating only on the re-
construction error and 2) although the conditional probability
density function (pdf) of the source given the base-layer recon-
struction differs from the original source pdf, a scaled version
of the same quantizer is employed for all the encoding layers.
In particular, AAC incurs a substantial performance penalty in
offering bit-rate scalability when encoding modules operate at
low rates.

In this paper, we focus on improving the bit-rate scalability
of compression systems that rely on optimization of the WSE
distortion metric. We start with a formal proof demonstrating
the suboptimality of the conventional approach. Next, we
propose two quantization techniques for improving the bit-rate
scalability of compression systems. Our first proposed tech-
nique—the companded scalable quantization (CSQ) scheme
[19], [20]—achieves asymptotically (high resolution) optimal
scalability in the operational rate-distortion (RD) sense; pre-
liminary work [19], [20] referred to CSQ as the asymptotically
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optimal scalable (AOS) scheme. Here, we consider the com-
pandor domain representation of the SQ and note that WSE
optimization in the original signal domain is equivalent to mse
optimization of the companded signal. Moreover, we observe
that it is possible to quantize the reconstruction error without
loss of optimality whenever the distortion measure is mse. We
hence propose the CSQ approach, which achieves asymptotic
optimal scalability by quantizing the reconstruction error in
the compandor’s companded domain. We then fundamentally
extend the CSQ scheme by conditioning enhancement-layer
quantization on base-layer information [21], [22]. The con-
ditional enhancement-layer quantization (CELQ) scheme is
our second proposed technique. In the important case that the
source is well modeled by a Laplacian process, we show that
CELQ is implementable by switching between two distinct
quantizers depending on whether or not the base-layer quantizer
employed the so-called “zero dead-zone.” CELQ is incorpo-
rated in a straightforward manner within the CSQ scheme
and shown to further improve its performance by a substantial
margin. Simulation results are first given for a synthetic memo-
ryless Laplacian source under a -law companded system. The
proposed quantization schemes are then implemented within
the multilayer MPEG AAC with a standard compatible base
layer. Objective and subjective evaluations confirm that major
performance gains, by a factor of 2 to 3 in bit-rate savings, can
be achieved over standard scalable MPEG AAC. For example,
the proposed four-layer scalable coder consisting of 16-kb/s
layers achieves performance close to a 64-kb/s nonscalable
coder on the standard test database of 44.1-kHz (monophonic)
audio. Moreover, the proposed schemes eliminate the compu-
tationally demanding parameter optimization procedure at the
enhancement layers of the scalable AAC.

The organization of the paper is as follows. Notation and pre-
liminaries are covered in Section II. A brief overview of scalable
quantization and audio coding is provided in Section III. The
quantizer design problem and a formal proof demonstrating the
suboptimality of the conventional approach are given in Sec-
tion IV. The two proposed schemes, CSQ and CELQ, are de-
tailed in Sections V and VI, respectively. Implementation of
the proposed schemes within MPEG AAC is explained in Sec-
tion VII. Simulation results for synthetic memoryless Laplacian
sources with -law companding and for real-world audio coding
in conjunction with AAC, are presented in Section VIII.

II. NOTATION AND PRELIMINARIES

Throughout the paper we use the following notation. Let the
input to the system be random variable with pdf , where
an instance of is denoted by , and . Expectation with
respect to is denoted by , and the differential entropy
by .

The nonuniform SQ is denoted by the function , which
partitions the real line into disjoint cells , .
The other parameters pertinent to the quantizer are: the volume
of each cell , the high-resolution un-normalized quantiza-
tion level density , the scaling factor , and the distor-
tion-rate function . Rate is denoted by and distortion by .
The quantization error is denoted by . Subscripts and denote

Fig. 1. Block diagram of a two-layer scalable AAC where the enhancement
layer quantizes the base-layer reconstruction error. Perceptual redundancy via
noise shaping is exploited using the transform and psychoacoustic model. The
transform coefficients are grouped into nonuniform bands before adaptive
per-band scaling and quantization. Scaling information and quantization
indices are transmitted to the decoder for all encoding layers using entropy
coding. Target rate is achieved by the rate-distortion control module.

the enhancement-layer and base-layer variables, respectively. A
quantized and reconstructed value is denoted by and a predicted
value by , e.g., is the quantized and is the predicted value of
variable .

III. SCALABLE QUANTIZATION AND AUDIO CODING

In this section, we provide a brief overview of scalable quanti-
zation and conventional audio coding techniques. We start with
the multilayer AAC since it aptly characterizes a generic percep-
tual audio coder. For an overview of perceptual audio coding see
[23], and for a detailed description of AAC we direct the inter-
ested reader to [3]–[6]. Next, we outline relevant well-known re-
sults from high-resolution quantization theory. A thorough treat-
ment of the theory is beyond of the scope of this paper and can
be found in [24].

A. Scalable Coding of Audio

The most common approach to scalable coding involves the
use of multiple encoding layers where each encoding layer
quantizes the reconstruction error of the preceding layer. A
high-level block diagram of the two-layer AAC is shown in
Fig. 1. The time-domain signal is grouped into overlapping
frames and transformed into the spectral domain using a modi-
fied discrete cosine transform (MDCT). The time-domain data
is also input to the psychoacoustic model, whose output is the
masking threshold for the spectral coefficients. The transform
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coefficients are grouped into nonuniform bands. All coefficients
within a given band are quantized using the same nonuniform
SQ. The quantization noise is controlled by varying the scaling
of a generic quantizer from band to band. Statistical redundancy
in the quantized coefficient indices is exploited by the use of
entropy coding. The quantization scheme at the enhancement
layer is identical to that of the base layer. Quantizer scale-fac-
tors that achieve the target distortion are searched for and
transmitted at all the encoding layers. The focus of this paper is
on the scaling and quantization operations, which are shown in
boldface font in the figure.

Other approaches to scalable coding may be grouped into the
class of so-called “bit-plane” methods. There is no clear de-
markation between multilayer and bit-plane approaches since
a multilayer approach may be formulated within the bit-plane
scheme and vice-versa. It is, nevertheless, convenient to cat-
egorize schemes by their granularity and computational com-
plexity. Bit-plane methods typically offer finer granularity and
lower computational complexity than standard multilayer ap-
proaches, but their overall RD performance is relatively weaker,
as demonstrated in Section VIII. Current bit-plane based scal-
able coding methods for audio, such as BSAC [25], EZK [26],
and ESC [27], use variants of the basic hierarchical partitioning
technique, a method originally developed for image coding [28],
[29].

B. Entropy-Coded Scalar Quantization

Let be a scalar random variable with pdf .
Quantizer , maps into one of reconstruction points

, , by partitioning into disjoint and exhaustive
cells, , , such that if . We
further denote the width of a cell by the function . The
performance of the quantizer is measured by the WSE distortion
criterion given by

(1)
where is the weight function.

For large , high-resolution analysis is employed to model
the SQ. It is convenient to define the un-normalized quantization
level density function [30], where, , and

gives the width of the quantization cell about , i.e.,

The following assumptions are typically employed in high-
resolution quantization theory when analyzing the RD perfor-
mance of a quantizer: 1) the source density, , is contin-
uous and smooth; 2) the quantization cells are small enough that
the source density is nearly constant within the cell; 3) each re-
construction point is located at the center of the cell, i.e., is
in center of the cell ; and 4) the quantization rate is high, i.e.,

.

Bennett’s celebrated high-resolution approximation of the
quantizer distortion appeared in [31]. It was later extended from
mse to the WSE metric, for example in [32]:

(2)

The quantizer’s rate is approximated by the entropy of
the quantized output, i.e.,

(3)

where, .
A high-resolution approximation of for the quantizer with

quantization level density was given by Gish and Pierce [33]

(4)

where is the differential en-
tropy of . (All logarithms are to the base 2 and the rate is hence
measured in bits.)

The asymptotically optimal, nonscalable, entropy-coded
SQ is one that minimizes subject to the rate constraint

. Let be such an optimal SQ with level
density . Then

(5)

The optimal high-resolution SQ for the “plain” mse was first
outlined by Zador in [34], [35] (see also the rigorous analysis
in [30], [33]). Its extension to vector quantization and for the
WSE criterion has been proposed by several researchers, e.g.,
[32]. The optimal, high-resolution SQ is given in terms of the
weight function by

(6)

where the normalizing constant is chosen to meet the rate
constraint. Hence, by (4), we get

(7)

The operational distortion-rate function of the nonscalable
SQ, denoted , is easily derived by substituting (6) and
(7) into (2):

(8)

IV. SHORTCOMINGS OF CONVENTIONAL SCALABLE CODING

A. Problem and Motivation

Let us focus on the enhancement layer of a multilayer coder.
In the conventional scalable system, the enhancement-layer
quantization directly quantizes the base-layer reconstruction
error. Moreover, the AAC encoder employs a scaled version
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of the base-layer quantizer at the enhancement layer. There
are two main problems with the conventional approach to
scalability.

1) The conventional approach misinterprets the perceptual
“weights” of the WSE distortion metric at the enhance-
ment layer. At the base layer, a nonuniform quantizer
is used to efficiently handle the weights of the distor-
tion metric. Recall that the level density function of the
base-layer quantizer was proportional to the square root
of the weights [see (6)]. These weights, however, cannot
be expressed as a function of the base-layer reconstruc-
tion error. Direct quantization of the reconstruction error
at the enhancement layer fails to successfully optimize the
weighted distortion metric.

2) The pdf of the base-layer reconstruction error differs con-
siderably from the source pdf. Restricting the enhance-
ment-layer quantizer to be identical to the base-layer
quantizer (up to a scaling factor) is therefore suboptimal.
For example, audio signals may be well modeled by the
Laplacian density function and the corresponding AAC
quantizer may be designed suitably. However, the pdf of
the reconstruction error seen by the enhancement layer
will be distinctly non-Laplacian. Hence, one quantizer
at the enhancement layer (or its scaled version) may not
be sufficient to effectively quantize the reconstruction
error. In fact, the reconstruction error statistics depend
on the quantization level selected at the base layer. An
observation that is commonly ignored by conventional
approaches.

The effect of poor quantization in scalable AAC is illustrated
in Fig. 2. The figure depicts the overall quantizer after two
layers of AAC encoding where the base-layer and enhance-
ment-layer scale-factors were chosen arbitrarily. The overall
quantizer has numerous obvious artifacts and its resulting
operational RD function is poor. Due to poor quantization, the
enhancement layer has to search for a new set of quantizer
scale-factors and transmit their values as side-information. The
side-information representing enhancement-layer scale-factors
is, in essence, retransmission of information contained in the
base-layer scale-factors. The side-information may be using as
much as 30%–40% [36] of the total rate at low encoding rates. It
is important to realize that this approach to scalability does not
make full use of the available information. In particular, apart
from the base-layer reconstruction, the enhancement-layer
decoder also has access to the base-layer quantization interval.
The base-layer quantizer scale-factors can be used to adjust
the scale-factors at the enhancement layer. While it is easy
to see that appropriate use of the information from the base
layer is the key to better performance of a scalable coder, the
means to achieve this goal are not obvious. The benefits of
exploiting base-layer information were demonstrated in the
context of, scalable predictive coding in [37], multistage vector
quantization in [38], and stereo coding of audio in [39].

B. Asymptotic WSE Suboptimality of Conventional Scalability

In this section, we formally prove that, asymptotically, the
conventional approach to bit-rate scalability is strictly subop-

Fig. 2. Overall quantizer after two layers of encoding in AAC. Non-uniform
quantization is employed at both the base layer and the enhancement layer.
The overall quantizer is poorly designed and remains mismatched to the task
of optimizing the distortion metric.

timal for the WSE measure. Consider a two-layer scalable coder.
In the standard approach, the enhancement layer simply quan-
tizes the reconstruction error of the base layer. We refer to this
scheme as reconstruction error quantization (REQ). Let be the
overall reconstructed value of , be the reconstruction error at
the base layer, and be the quantized value of . For the base
layer we use the terminology described earlier, i.e., is the re-
constructed value of when , . The quantiza-
tion level density function of the base-layer quantizer is denoted
by and the normalizing constant by . For the enhance-
ment layer we use subscript instead of and the quantizer input
is , i.e., the enhancement-layer quantizer, , maps
into one of reconstruction points , , by parti-
tioning into disjoint and exhaustive cells, , ,
such that if . The level density function and
the normalizing constant at the enhancement layer are denoted
by and , respectively.

In deriving the RD function for the REQ scheme, we make
the usual assumptions of high-rate quantization theory: 1) the
source density, , and the weight, , are continuous
and smooth; 2) the quantization cells are small enough that the
source density and the weights are nearly constant within the
cell; 3) each reconstruction point is located at the center of the
cell, i.e., is in center of the cell , and in center of the cell

; and 4) the quantization rate at each layer is high, i.e., ,
.

Claim 1: Given an optimal base layer, the high-resolution
RD performance of a scalable coder employing REQ is strictly
worse than the operational distortion-rate function of the non-
scalable coder given by (8).

Proof: The overall distortion for the REQ scheme is

(9)
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where the approximation is due to the high-resolution assump-
tions. The integral in (9) may be evaluated as

The resulting sum may be viewed as representing a Riemann
integral due to the high resolution of the enhancement layer

. Hence

(10)

Substituting (10) in (9), we obtain

Using a similar Riemann integral argument for the base layer
leads to

(11)

where

(12)

The base-layer and enhancement-layer rates are related to
their respective quantizers by [33]

(13)

To prove that the RD performance of the REQ scheme is
strictly worse than that of the nonscalable scheme, we estab-
lish two inequalities, one for the distortion and the other for the
rate. Using Hölder’s inequality [40], we get (14):

(14)

Further, since is a pdf, we have

(15)

and, from [41], the pdf of is given by

otherwise

which, as , gives

(16)

Substituting (15) and (16) in (14), Hölder’s inequality yields

(17)

For the REQ to be optimal, the base layer must be optimal
in the first place. The optimal base-layer quantizer is one that
satisfies . Therefore, in (12) reduces to

(18)

where use is made of (17). Now, substituting (18) in (11), we
obtain the “distortion-inequality”

(19)

Next we establish the “rate-inequality.” Using (13), the total
rate is given as

which implies that

By applying Jensen’s inequality, we obtain

(20)
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By combining (19) and (20), and using the fact that
, we get

(21)
Therefore

(22)

The performance of REQ is strictly worse than the bound
unless the two main inequalities, (14) and (20), are satisfied
with equality. Inequality (14) is satisfied with equality only if

is proportional to , hence only if is
a constant, i.e., if the base-layer quantizer is uniform. How-
ever, the optimal SQ at the base layer is given by

, and is not uniform for the WSE measure (except
when it degenerates to plain mse). Consequently, the RD per-
formance of REQ is strictly worse than that of the nonscalable
coder for the WSE distortion metric.

An interesting observation is that (20) is satisfied with
equality only if is proportional to . Since
is the only parameter available for control at the enhancement
layer, the overall distortion of the REQ scheme with an op-
timum base-layer quantizer is minimized given the total rate
when is proportional to . Hence, the best enhance-
ment-layer quantizer in the REQ approach has level density
proportional to the pdf of the reconstruction error.

V. COMPANDED SCALABLE QUANTIZATION

A scalable coder offers scalability at no rate loss if it achieves
the RD performance of the nonscalable coder, . Therefore,
represents the operational RD bound for the scalable coder. Fur-
ther, achieving yields asymptotic optimality because of the
high-resolution assumptions employed in deriving this bound.
In this section, we develop the CSQ scheme and show that it
achieves asymptotic operational RD optimality. One way to ob-
tain optimal scalability is to exploit all the information from the
base layer by designing a separate enhancement-layer SQ for
each base-layer index. The obvious drawback of such a scheme
is its heavy memory requirement. Instead, we consider the com-
pandor-equivalent representation of the (nonuniform) SQ, which
consists of a compressor, a uniform SQ and an expander (in-
verse compressor). Such a mapping is shown in Fig. 3. The com-
pressor function, , and the uniform SQ stepsize, , of the
compandor-equivalent representation are related to the quanti-
zation level density of the nonuniform SQ, , by

(23)

We can retain the simplicity of an REQ scheme and never-
theless achieve asymptotically optimal performance by taking
advantage of the following two observations.

1) REQ is optimal for the mse criterion .
For mse and at high resolution, the optimal nonscalable

entropy coded SQ is uniform [30], [33], i.e.,

(24)

Fig. 3. Block diagram of a nonuniform scalar quantizer and its equivalent
companding scheme. The compressor function, c(x), is used as a mapping from
a nonuniform to a uniform quantizer. �(x) is the un-normalized quantization
level density of the nonuniform quantizer and � is uniform quantizer stepsize.

At high resolution, uniform quantization at the base layer
yields uniform pdf of the reconstruction error. This can be
formally shown by substituting in (16).
We get

otherwise.
(25)

This observation is intuitively obvious—if we employ
uniform quantization at the base layer and assume that
the source pdf is constant over the quantization interval,
the reconstruction error pdf will naturally be uniform.
Hence, the optimal SQ at the enhancement layer is also
uniform.

To formally prove that REQ is optimal for mse, we
simply substitute , and

in (11), (12) and (13). The resulting set
of equations are

Thus, REQ asymptotically achieves the operational RD
bound when the distortion metric is mse.

2) For an optimal entropy coded SQ, the WSE of the original
signal equals mse of the companded signal.

The optimal SQ satisfies , which
implies that reducing Bennett’s integral
in (2) to . Hence, for the mapping ,
the WSE incurred for quantizing (in the original do-
main) equals the mse incurred for quantizing (in the
companded domain).

Given the above observations, we construct CSQ as shown
by the block diagram of Fig. 4. Let the base-layer and en-
hancement-layer uniform SQs in the companded domain have
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Fig. 4. Block diagram of the CSQ scheme. Input x is first companded using the compressor function c(x). Successive refinement is then performed using uniform
scalar quantization (USQ) in the companded domain. � and � denote the base-layer and enhancement-layer stepsize, respectively, and c (x) is the expander
(inverse compressor).

stepsizes and , respectively. Let be the distortion
of CSQ, and and be the base-layer and enhance-
ment-layer rates. Choose the compressor function such that

and let be the companded signal.
Claim 2: The RD performance of CSQ achieves the nonscal-

able RD bound of (8), i.e., CSQ achieves asymptotic optimal
scalability.

Proof: The RD performance of the CSQ scheme is ob-
tained as follows:

We thus achieve asymptotic optimality.

VI. CONDITIONAL ENHANCEMENT-LAYER QUANTIZATION

Let us consider the trade-off between compression efficiency
of scalable coding versus its granularity. Given a total target
rate, the overall performance of the scalable system improves
as fewer layers with larger bit-rate increments are used. At the
extreme, the performance of the single layer “scalable” coder
is optimal since it is trivially identical to the nonscalable coder.
However, scalable quantization may incur heavy performance
penalties as the granularity is increased with more layers of
smaller bit-rate increments.

In the previous section, scalable coding using CSQ was
shown by high-resolution analysis to be asymptotically optimal
for the WSE distortion measure. Such analysis assumes that
each encoding layer operates at high rates. In this section,
we address the more pertinent case where encoding layers
operate at low (incremental) rates. The CSQ result derivation
employs a compressor function to map WSE in the original
signal domain to mse in the companded domain. Successive
refinement of the companded signal was then performed using
uniform quantizers. An entropy coded uniform quantizer is the
optimal SQ for minimizing the mse at high encoding rates.
However, the optimal SQ for minimizing mse at low rates
may not necessarily be uniform [42], [43]. Approximating
the optimal SQ with a uniform SQ may lead to considerable
performance degradation at low rates [33]. This observation

is effectively recognized by the designers of practical systems
such as AAC, JPEG [44], MPEG-4 video [45] and H.263 [46],
which employ an “almost,” but not quite, uniform quantizer in
the companded domain. Direct utilization of CSQ may not be
possible when the quantizer employed for minimizing the mse
metric (in the companded domain) is not uniform. The main
problem arises in the compandor-equivalent representation
of such an optimal low-rate SQ. The compressor function in
this case might neither be smooth nor map the WSE of the
original signal to the mse of the companded signal. Hence, the
assumptions made in the CSQ derivation are violated and the
optimality results are invalid at low encoding rates.

Let us consider the design of the enhancement-layer quan-
tizer when the base layer employs a nonuniform quantizer in
the companded domain. Optimality implies achieving the best
RD trade-off at the enhancement layer for the given base-layer
quantizer. One method to achieve optimality, by brute force,
is to design a separate entropy-constrained quantizer for each
base-layer reproduction. This approach is prohibitively complex
in general. However, in the practically important case where the
companded source signal is well modeled by a Laplacian den-
sity [47], [48], optimality can be achieved at low complexity by
designing different enhancement-layer quantizers for only two
cases, depending on whether or not the base-layer reproduction
is zero. The argument follows from the “memoryless” property
of exponential pdfs [49] which can be stated as follows: given an
exponentially distributed variable consider an interval ,
where . The conditional pdf of is identical
for all intervals of the same width . Since the Laplacian
is a two sided exponential, the memoryless property extends to
the Laplacian pdf for all intervals that do not contain the
origin.

Let us assume that the source density in the companded do-
main is modeled by the Laplacian pdf. For a Laplacian pdf, the
dead-zone quantizer (DZQ) may be used to closely approxi-
mate the optimal entropy coded SQ at all rates [42]. The DZQ
has a “dead-zone” around zero whose width is greater than the
constant width of all other intervals. Further, the reconstruction
levels are shifted toward zero. The structure of the DZQ em-
ployed in AAC is shown in Fig. 5. Note that the compressor
function to map DZQ to uniform SQ would be nonsmooth.

Claim 3: If a Laplacian source is quantized using DZQ at the
base layer, for all nonzero base-layer indices, the reconstructed
error is identically distributed (except for obvious possible re-
versal depending on the sign) and independent of the base-layer
reconstruction.

Proof: The proof follows directly from the memoryless
property of the exponential pdf.
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Fig. 5. DZQ used in AAC. The width of quantization interval around zero
is nearly 1.2 times the width of other intervals. The reconstruction within an
interval is biased toward zero.

This situation is depicted in Fig. 6. Three quantization in-
tervals at the base layer are shown, one where the base-layer
reconstruction is zero (region 0), one where it is positive (re-
gion 1) and one where it is negative (region 2). It can be clearly
seen that whenever the base-layer reconstruction is not zero,
the conditional pdf of the signal seen by the enhancement layer
is identical in shape (and reversed depending on the sign of
base-layer reconstruction). This conditional pdf, , is
obtained by truncating to the quantization interval
and normalizing as is shown by the lightly shaded region in the
figure. Hence, when the base-layer reconstruction is nonzero,
only one quantizer (and its flipped version) is sufficient to op-
timally quantize the reconstruction error at the enhancement
layer. Since speech and audio may be closely approximated by
a Laplacian model [47], [48], even in the companded domain,
we propose to implement the CELQ scheme by the use of two
switchable quantizers. The quantizers are switched depending
on whether the base-layer reconstruction is zero or not. Note
that the sign of the base-layer reconstruction is available at the
enhancement layer eliminating the need to send any side infor-
mation for flipping of the quantizer.

The design of CELQ can be further simplified, albeit at some
loss of optimality. A simple uniform-threshold and reconstruc-
tion quantizer (UTRQ) is used at the enhancement layer when
the base-layer reconstruction is not zero. A UTRQ is symmetric
around zero, has a constant stepsize and, in all the quantization
intervals the reproduction value within the interval is “biased”
away from the center by a constant number. The only difference
between a uniform SQ and UTRQ is the bias away from the
center in the latter’s reproduction value. The UTRQ is attractive
because of its simple encoding and decoding rule. The encoder
simply performs the rounding operation after the coefficient is
divided by the stepsize and the decoder subtracts the constant
bias from the quantized coefficient index before multiplying it
by the stepsize. For the case where the base-layer reconstruc-
tion is zero the enhancement layer simply uses a scaled version
of the base-layer quantizer.

The proposed CELQ scheme is implemented within the CSQ
approach as shown in Fig. 7. The input signal, , is companded
using the compressor function, , to yield the companded
signal, . At the base layer, is scaled using stepsize ,
and quantized using a fixed DZQ. The reconstruction error, ,
is generated in the companded domain and quantized at the
enhancement layer. The enhancement-layer switches between
DZQ and UTRQ depending on whether or not the base-layer

Fig. 6. Shown (shaded area) is the shape of the conditional pdf as seen by the
enhancement layer depending on the base-layer quantization interval for three
different cases marked as 0, 1, and 2. The actual pdf is obtained by normalizing
to one. The conditional pdf when base-layer reconstruction is not zero (cases 1
and 2) is the same except for mirroring.

reconstruction is zero. The enhancement-layer quantizer step-
size is denoted by . The overall two-layer quantizer for the
CELQ scheme is shown in Fig. 8 (the two-layer quantizer for
REQ scheme was shown in Fig. 2). We see from the figure that
the overall quantizer exhibits no major artifacts. Furthermore,
the width of the quantization intervals increases monotonically
away from zero resulting in an improved rate-distortion func-
tion, as we demonstrate later.

VII. SCALABLE AAC USING CSQ AND CELQ

In this section, we outline the implementation of the proposed
CSQ and CELQ schemes within the scalable AAC. The scaling
and quantization operation for the coefficients in one band in
AAC is given as

(26)

where and are original and quantized coefficients, is the
quantized coefficient index, is the quantizer scale-factor, and
nint() and sign() denote the nearest-integer and signum func-
tions, respectively. From (26), we see that AAC uses a com-
pressor function of and a DZQ to quantize the trans-
form coefficients at the base layer. Further, adaptive scaling per
band is applied to shape the quantization noise. Hence, CSQ and
CELQ can be implemented in a straightforward manner within
AAC.

Let us first focus on the implementation of the CSQ scheme
within AAC. At the base layer, once the coefficients are
companded and scaled by the appropriate scale-factor, they
are all quantized using the nearest-integer operation, i.e., the
same quantizer. This observation suggests that, if the quantizer
scale-factors at the base layer are chosen correctly, optimizing
mse in the “companded and scaled domain” is equivalent to
optimizing the WSE measure in the original domain. Hence,
the enhancement-layer encoder can use a single quantizer in
the companded and scaled domain for quantizing the recon-
struction error. The block diagram of the CSQ scheme when
applied to AAC is shown in Fig. 9. The scheme is referred
to as CSQ-AAC for brevity. At the base layer, the transform
coefficients are grouped into bands, companded using the
compressor function , scaled using scale-factors
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Fig. 7. Block diagram of the CELQ implemented within the companded scalable quantization scheme. In addition to quantizing the reconstruction error in the
companded domain, the quantizer at the enhancement layer is switched between the DZQ and the UTRQ depending on whether the base-layer reconstruction is
zero or not. c(x) is the compressor function and, � and � are the base-layer and enhancement-layer stepsizes, respectively.

Fig. 8. Overall quantizer after two layers of encoding using CELQ. The overall
quantizer is similar to a single-layer (nonscalable) quantizer.

, and quantized using DZQ. are used
as representatives for the coefficients in the bands. Note that
the base layer is standard compatible. At the enhancement
layer, the reconstruction error is generated (by the first adder)
in the companded and scaled domain. Coefficients from all
the bands are then quantized using a single enhancement-layer
quantizer, identical to that of the base layer. The scaling factor
for this enhancement-layer quantizer is chosen in order
to meet the bit-rate requirement at that layer. By quantizing
the reconstruction error in the scaled and companded domain,
the enhancement layer in the CSQ-AAC is able to effectively
handle the WSE measure with only one quantizer for all the
coefficients. Major savings in bit rate are achieved since CSQ
eliminates the need to transmit the quantizer scale-factor infor-
mation for each band at the enhancement layers. In effect, the
quantizer scale-factors at the enhancement layer may be viewed
as being predicted from those at the base layer. The CSQ
scheme has another key benefit over the standard approach.
Since quantizer scale-factors are directly available from the
base layer, CSQ eliminates the need for their optimization at the
enhancement layer. This is significant since parameter search
procedures constitute by far the most complex portion of AAC.
In fact, barring a small overhead incurred at each layer, the
complexity of CSQ is comparable to a single layer AAC.

Since the transform coefficients of a typical audio signal are
reasonably modeled by the Laplacian pdf, and AAC uses DZQ
at the base layer, CELQ is also implemented within the scal-
able AAC in a straightforward manner. CELQ may be added
to CSQ-AAC by simply putting in a decision block to decide
whether or not the quantized value at the base layer is zero. This

choice is made for every coefficient. If the quantized value at
the base layer is zero, the enhancement layer continues to use
DZQ for quantizing the reconstruction error, otherwise, the en-
hancement-layer quantizer is switched to use a UTRQ. The re-
construction value of the UTRQ is shifted toward zero by an
amount similar to AAC. Further, the reconstruction values of
the DZQ and UTRQ are adjusted so that they are always within
the base-layer quantization interval.

A block diagram for CELQ-AAC is shown in Fig. 10. It is sim-
plified, without losing representation accuracy, by eliminating
the generation of the reconstruction error at the enhancement
layer. Instead, the base-layer quantizer directly feeds the quanti-
zation interval (in the companded and scaled domain) to the en-
hancement-layer quantizer, which then refines the quality of the
base-layer reconstruction. The advantages of CSQ are retained
by operating in the scaled and companded domain. The base layer
of CELQ-AAC is also standard compatible.

VIII. SIMULATION RESULTS

Two sets of simulation results are provided. First, we compare
the RD performance of the proposed scheme for a synthetically
generated memoryless Laplacian source. Then, we evaluate the
operation of the proposed schemes on real-world audio signals
using AAC.

A. Synthetic Laplacian Source

The performance of the CELQ and CSQ schemes is compared
experimentally to the REQ scheme for a two-layer system built
using the -law companding function ([18, ch. 4]). The input is
generated such that the density of the source in the companded
domain is (memoryless) Laplacian with zero mean and variance

. The maximum value of the -law is set to
and hence, the variance of the source has no effect on the oper-
ational RD curves. Ideally, the weights of the WSE criterion are
defined by the problem at hand. In this synthetic source case, to
implement a WSE criterion such that the -law is the optimal
compressor function, we use a “reverse engineering” approach,
i.e., we compute the weights using the relation .
The weights derived for the -law compressor function are

In our implementation of the REQ scheme, the compressor func-
tions for the base layer and enhancement layer are identical. Fur-
ther, all the schemes use the same base layer.
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Fig. 9. Block diagram of the companded scalable quantization scheme applied on AAC. The base layer is identical to the standard AAC. x ; . . . ; x are used as
representatives for the coefficients in the n scale-factor bands. c(x) = jxj denotes the compressor function and � ; . . . ;� denotes the base-layer stepsizes
for the n bands. The reconstruction error at the enhancement layer is generated in the scaled and companded domain. All coefficients at the enhancement layer are
quantized using a single quantizer with stepsize � .

Fig. 10. Block diagram of the conditional enhancement-layer quantizer implemented within the AAC scheme. The base-layer quantization interval in the scaled
and companded domain is fed to the enhancement layer. The quantization index is generated at the enhancement layer in a manner consistent with this interval by
switching between one of two quantizers, DZQ and UTRQ, depending on whether the base-layer reconstruction is zero or not, respectively.

1) CSQ Versus REQ: RD Values for Different and Base-
Layer Rates: In Fig. 11, we compare the operational RD curves
of the CSQ and the REQ schemes for different values of the com-
pressor function parameter and for different base-layer rates. The
abscissa denotes the average WSE in decibels and the ordinate
gives the total rate in bits/sample. The total rate is the sum of
the base-layer and enhancement-layer rates. The CSQ scheme is
implemented, as shown in Fig. 4. Uniform SQ is used in the com-
pandeddomaintoquantize thecoefficients forboththecompeting
schemes. The figure shows the average RD performance of the
competing schemes obtained by connecting the operating points
of the scheme. Points on the RD curve are obtained by varying the
enhancement-layer quantizer stepsize. Also shown for reference
is the RD performance of a single-layer (nonscalable) coder. It is
obtained as the convex-hull of all the operating points, including
the nonscalable coder, and represents the operational RD bound
of the coder.

Fig. 11(a) and (b) depicts the behavior of the systems for
different values of the compressor function parameter . The
base-layer rate in these is kept constant at 1 bit/sample and
the value of parameter is varied from 50 to 255. Fig. 11(b)
shows the RD performance of the schemes for a higher value of

, while the curves in (a) are obtained for the lower value
of . As expected, we observe that the performance gains
for the CSQ over REQ are higher for larger values of , i.e.,
for stronger companding. As we decrease , the WSE criterion
gradually approaches mse and REQ approaches CSQ (identical
for ).

The effect of different base-layer rates on the RD perfor-
mance of the schemes is shown via Fig. 11(b) and (c). In these,

is kept constant at 255 and the RD performance is evaluated for
two different base-layer rates of 1 and 2.5 bits/sample. Fig. 11(c)
shows the RD performance of the competing schemes for a (rel-
atively) high base-layer rate of 2.5 bits/sample. When the base-
layer and enhancement-layer rates are both high, performance
of CSQ nearly equals the nonscalable performance. This can
be seen from Fig. 11(c) by comparing the CSQ and nonscalable
curves at enhancement-layer rates of 1.5 bits/sample (total rate

4 bits/sample). CSQ achieves an asymptotic gain of 0.75
bits/sample over REQ [indicated by the arrow on Fig. 11(c)].
A limiting (low-rate) case for base-layer rate of 1 bit/sample is
shown in (b). We observe that as the base-layer rate decreases
the asymptotic performance gain of CSQ over REQ decreases.
This can be seen by comparing (b) and (c). CSQ and REQ are
identical when the base-layer rate is zero. It is interesting to ob-
serve the region where CSQ and REQ curves intersect in (a) and
(b). Both the base and enhancement layers operate at the low rate
of 1 bit/sample. In this region some of the RD performance of
the REQ scheme is better than CSQ. This is due to the fact that
a uniform SQ is optimal only asymptotically and CSQ ceases to
be efficient when quantization is performed at very low rates.

2) CELQ Versus CSQ: RD Values for Different Base-Layer
Rates: In Fig. 12, we compare the operational RD curves of
CELQ and CSQ at different base-layer rates. The value of is
kept constant at 255. The key benefit of the CELQ approach
is when quantization at the base layer is performed at low rates.
Hence, the simulation results are obtained at very low base-layer
rates of 0.5 bits/sample and 0.25 bits/sample (Fig. 12(a) and (b),
respectively). Unlike the prior set of results, where quantization
in the companded domain was performed using a uniform SQ,
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Fig. 11. Performance of a two-layer coder with �-law companding for the memoryless Laplacian source (� = 100, x = 7�). The plot shows the total rate
(bits/sample) versus WSE (dB) for the two competing methods: CSQ and REQ. The companded signal is quantized using a uniform scalar quantizer. The figure
depicts the behavior of the schemes for different degrees of companding and base-layer rates. The performance of a nonscalable coder is shown for reference. (�,
base-layer rate)=(a) (50, 1 bit/sample), (b) (255, 1 bit/sample), and (c) (255, 2.5 bits/sample).

Fig. 12. Performance of a two-layer coder with �-law companding for the memoryless Laplacian source (� = 100, x = 7�). The plot shows the total rate
(bits/sample) versus WSE (dB) for the two competing methods: CELQ and CSQ. The companded signal is quantized using a dead-zone quantizer. The performance
of a nonscalable coder is shown for reference. The figure depicts the behavior of the schemes for different two different base-layer rates: (a) 0.5 bits/sample and
(b) 0.25 bits/sample.

a DZQ is employed in the companded domain to quantize the
coefficients. The ratio of the quantization interval around zero
to other intervals for the DZQ is set to 1.4. For the UTRQ in the
CELQ scheme, the reconstruction is “biased’ toward zero by 0.2
times the quantizer stepsize.

The performance improvement in the CSQ scheme by the use
of DZQ instead of uniform SQ can be seen by comparing the
CSQ result in Figs. 11(c) and 12(a). Except for the quantizer in
use all the other parameters in these two curves are identical. For
more details on the comparison between uniform SQ and DZQ
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Fig. 13. Performance of a four-layer audio coder with each layer operating at 16 kb/s. Total bit-rate versus Average NMR is shown for the competing methods:
CELQ, CSQ and MPEG AAC. Also shown for reference (dotted line) is the performance of a single-layer nonscalable AAC. Averaging is performed over test
database of eight critical samples of 44.1-kHz monophonic audio signal. Psychoacoustic model in use is (a) RM-PSY and (b) JJ-PSY.

for the Laplacian source, see [42]. We see that at high rates, the
performance of uniform SQ approaches that of DZQ, which is
expected since the uniform SQ is asymptotically optimal. How-
ever, substantial performance benefit may be achieved at low
rates by the use of DZQ.

From Fig. 12 we observe that CELQ adds further improve-
ment to the CSQ scheme and is virtually indistinguishable from
the nonscalable curve at all rates. As the base-layer rate is low-
ered, CSQ approaches the CELQ scheme (identical when base-
layer rate is 0).

B. Simulation Results for Scalable MPEG AAC

To demonstrate their practical applicability, in this section,
we present objective and subjective test results for the proposed
schemes when they are implemented within the scalable MPEG
AAC encoder. Implementation details for CSQ and CELQ
approaches within the scalable AAC framework were given
in Section VII. The MPEG-4 reference model (RM) of AAC
[50] is used for simulations and the standard scalable MPEG
AAC is built using the REQ approach. For rigorous testing
of the proposed schemes the base-line AAC coding module
was simplified while keeping standard-compatibility. The bit
reservoir was not used and AAC was made to operate at a nearly
constant bit-rate. Bandwidth control, window switching and
frequency selective switch (FSS) modules were not employed.
Design of these tools is beyond the scope of this paper. These
simplifications allow for straightforward implementation of
the proposed schemes within AAC. To ensure robustness of
the proposed approaches for different weighting functions, the
schemes are tested with two different psychoacoustic models.
The first model is taken from the MPEG-4 RM [50], where
the weights in each band are simply a constant factor times the
energy in that band. The constant factor depends on the band
index. We call this model the RM-PSY. The second model
is implemented from [1] and [12] with minor modifications

TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED SCHEMES, CELQ AND CSQ,
WITH THE STANDARD APPROACH, REQ, ON A TWO-LAYER SCALABLE AAC
CODER. HIGHLIGHTED VALUES SHOW THE RATE SAVINGS OF CELQ OVER

REQ FOR SIMILAR DISTORTION VALUES

and simplifications. The spreading function and the prediction
to find the tonality factor is directly applied to the transform
coefficients. We call this model the JJ-PSY. The choice of the
psychoacoustic model determines the masking threshold and
hence directly affects the resulting NMR calculation. For the
test set, eight audio files of sampling rate 44.1 kHz are taken
from the EBU-SQAM [50], [51] database, which include tonal
signals, castanets, two singing files, and two speech files, one
with a male-German speaker. Average NMR is used as the
distortion measure in evaluating the objective quality of the
companded audio signal. The base layer for all the schemes is
identical and standard-compatible.

1) Objective Results for Two-Layer Coding: The first set
of results are presented for a two-layer scalable AAC using
the RM-PSY psychoacoustic model. Table I shows the average
performance of the competing schemes for the eight test files
at different combinations of base-layer and enhancement-layer
rates. The results show that CSQ-AAC achieves substantial
gains over REQ-AAC in most cases for two-layer scalable
coding. CELQ-AAC adds further, and in most cases major,
performance benefits over CSQ-AAC. For a clearer picture of
the bit-rates savings, we highlight one instance (bold) which
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Fig. 14. Performance of a four-layer audio coder with each layer operating at 16 kb/s. The total bit-rate versus Average NMR is shown for the competing methods:
CELQ, SPHIT-1 and SPHIT-4. Averaging is performed over a test database of 8 critical samples of 44.1-kHz monophonic audio signal. The psychoacoustic model
in use is: (a) RM-PSY and (b) JJ-PSY.

yields comparable distortion. The CELQ coder with 16
32 kb/s (base-layer enhancement-layer rate) is comparable
in distortion performance to the REQ scheme with 32 32
kb/s, a substantial bit-rate savings of 16 kb/s. The savings are
expected to add up with an increasing number of layers, as we
demonstrate next.

2) Objective Results for Multilayer Coding: In Fig. 13 and
14, we depict the RD curve of a four-layer coder with each layer
operating at 16 kb/s. In both the figures, the abscissa represents
average NMR in decibels and the ordinate gives the total rate in
kilobits per second. Average NMR is calculated across the test
set of eight audio files. The markers on the curves indicate the
RD points at the target rates of 16, 32, 48, and 64 kb/s.

In the first of the two figures, Fig. 13, we compare the perfor-
mance of the proposed CSQ and CELQ schemes with the stan-
dard scalable MPEG AAC which is based on the REQ approach.
Fig. 13(a) and (b) shows the performance for the two psychoa-
coustic modes, RM-PSY and JJ-PSY, respectively. Also shown
in the figure by the dotted line is the performance of the non-
scalable AAC which serves as the operational RD bound for the
scalable coding schemes. From the figure we observe that, for
both psychoacoustic models, CSQ gives substantial savings in
bit-rate over the standard scalable MPEG AAC for same repro-
duction quality (as measured by the average NMR). For example,
CSQ consumes only 32 kb/s (2 16 kb/s) to achieve an average
NMR better than that of the standard scalable MPEG AAC op-
erating at 64 kb/s (4 16 kb/s), a factor of 2 in bit-rate savings.
Major performance gains over CSQ are further achieved by the
CELQ scheme at virtually no additional computational cost. The
CELQ scheme is very close to the nonscalable bound and yields
a factor of 3 savings in bit-rate over the standard scalable MPEG
AAC. Further, since the quantizer scale-factors at the enhance-
ment layer are directly available from the base layer, the proposed
schemes lead tosubstantial reduction in thesearchcost, andhence
the overall complexity, of scalable AAC when compared with the
standard approach.

For comparison with bit-plane-based approaches, we im-
plemented the SPHIT scheme [28], [29], where each parent is
associated with a fixed (say ) children clustered together in
frequency. We refer to this as SPHIT- . A simple example of
this approach is SPHIT-1, where each parent is associated with
only one child—the next transform coefficient in the frame.
In [27], SPHIT-4 was shown to outperform EZK [26], which
in turn was demonstrated to outperform SPHIT-1. While the
authors’ proposed method, ESC [27], is claimed to be superior
to SPHIT-4, it could not be implemented due to lack of com-
plete algorithmic details in [27]. Hence, SPHIT-4 is apparently
the best publicly available bit-plane based scalable approach
and we use it for comparison with the proposed scalable ap-
proach. In Fig. 14(a) and (b), we compare the CELQ scheme
to SPHIT-1 and SPHIT-4. While on the one hand bit-plane
based methods offer lower complexity and finer granularity, we
see from the figure that the overall RD performance of these
scheme is inferior to CELQ.

C. Subjective Results for Multilayer Coding

We performed an informal subjective “AB” comparison test
for the CELQ approach consisting of four layers of 16 kb/s each
and the nonscalable coder operating at 64 kb/s. The test set con-
tained eight music and speech files from the SQAM database,
including castanets and German male speech. A mixed group
of eight trained and novice listeners performed the evaluation.
Each file was compressed by both competing schemes and the
two compressed files were presented in random order to the lis-
tener. The listeners were asked to indicate their preference be-
tween the two samples and were also provided with the option of
choosing “no preference” if no discernible difference was per-
ceived. Table II gives the test results. On an average, listeners
rated the overall quality of the CELQ as equivalent to the non-
scalable coder. The four-layer scalable CELQ-AAC coder con-
sisting of 16-kb/s layers achieves performance equal to a 64-kb/s
nonscalable coder.
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TABLE II
SUBJECTIVE PERFORMANCE OF A FOUR-LAYER CELQ (16 � 4 kb/s), AND

NONSCALABLE (64 kb/s) CODER

As seen from Table I, Fig. 13, Fig. 14, and Table II, CSQ
and CELQ achieve major performance gains over the standard
scalable AAC and conventional bit-plane based scalable ap-
proaches. In particular, CSQ achieves a factor of 2, and CELQ
a factor of 3, in bit-rate savings over the standard scalable
AAC. Furthermore, both CELQ and CSQ offer reduction in
computational complexity over the scalable AAC.

IX. CONCLUSION

In this paper, we presented two quantization techniques for
improving bit-rate scalability of compression systems which
optimize a weighted squared-error distortion metric and demon-
strated their implementation within the multilayer AAC. By
operating only on the base-layer reconstruction error, the con-
ventional approach fails to utilize all the information available
at the enhancement layer, and the enhancement-layer quantizer
remains mismatched to the task of optimizing the distortion
measure, resulting in poor scalability. We derived the com-
panded scalable quantization scheme and proved that it achieves
asymptotic optimal scalability by quantizing the reconstruction
error in the companded domain. It was then extended to the
case of low-rate coding by the use of enhancement-layer quan-
tization which is conditional on the base-layer information.
It was shown that in the case of Laplacian sources only two
switched quantizers at the enhancement layer are needed to
approach the RD bound when the base layer employs an op-
timal entropy-constrained scalar quantizer. Simulation results
on the -law companding scheme with a memoryless Laplacian
source, and on real-world signals using the multilayer AAC,
demonstrated that the proposed schemes can achieve signifi-
cant gains over conventional scalable coding, and eliminate a
large fraction of the performance penalty typically incurred
by the conventional approach to scalability. Furthermore, the
proposed schemes lead to substantial savings in computation
complexity for the scalable AAC by eliminating the need to
optimize the quantization parameters at the enhancement layer.
Informal listening tests indicated that our implementation of
a four-layer scalable coder consisting of 16-kb/s layers was
shown to achieve performance close to a 64-kb/s nonscalable
coder on the standard test database of 44.1-kHz audio.
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