
Adaptive Interpolated Motion-Compensated Prediction with
Variable Block Partitioning

Wei-Ting Lin, Tejaswi Nanjundaswamy, Kenneth Rose

Department of Electrical and Computer Engineering,
University of California Santa Barbara, CA 93106

{weiting,tejaswi,rose}@ece.ucsb.edu

Abstract

Conventional video coders rely heavily on pixel-domain block matching to remove temporal
redundancies. This prediction structure constrains pixels within a block to use the same
motion vector, which is ineffective for blocks with complex motion. To mitigate this short-
coming we recently proposed a new paradigm of adaptive interpolated motion compensation
(AIMC), wherein neighboring motion vectors are considered as pointers to multiple estima-
tion sources, which are linearly combined to form the final prediction, with weights chosen
from pre-trained K-sets to capture variations in statistics. While promising initial results
were obtained for fixed block sizes, this paper extends the approach to the important setting
of variable block size partitioning, which has become standard in state-of-the-art video cod-
ing. Specifically, we propose a non-trivial generalization of AIMC to account for arbitrary
block partitioning by “virtually” breaking a block to match its non-causal neighbors, and
creating an interpolation tree structure, whose nodes extend from the original partitioning.
This provides multiple estimates at the leaf nodes of the tree and enables an effective AIMC
implementation. Experimental results validate the proposed paradigm with significant bit
rate savings over conventional motion compensated prediction.

1 Introduction

In current video coders, such as AV1 [1] [2] and HEVC [3], inter-prediction is the
main tool for exploiting temporal dependencies. Instead of encoding raw pixel values,
the encoder divides a frame into non-overlapping blocks, and predicts each block by
searching for a similar block in one or more previously reconstructed frames. This
one-to-one pixel domain block matching is usually referred to as block-based motion
compensation (BMC), and the difference in position between target and reference
block is specified by a motion vector. BMC implicitly imposes a pure translation
assumption, i.e. all pixels in a block move uniformly. It is thus obvious that BMC
can cause significant prediction errors when a block’s motion is non-translational, as
in the case of zoom or rotation, and when the block overlaps multiple objects with
different motions.

To account for more complex motion, reflected in the underlying motion field, the
paradigm of adaptive interpolated motion compensation (AIMC) [4] was proposed.
The main idea of AIMC is to explicitly treat the neighboring motion vectors as point-
ers to multiple observation sources for estimating a pixel in the current block. The
final prediction is constructed by using optimal linear estimation coefficients to com-
bine these sources. As a result, AIMC breaks free from BMC’s limitation, namely,

restricting a motion vector’s influence to apply only and uniformly within a given
block in a rigid rectangular block structure. Related ideas had previously led to the
overlapped block motion compensation (OBMC) approaches [5–7]. However, OBMC
approaches use a single type of extended window to effectively average overlapping
observations. In distinction with OBMC, the AIMC approach focuses on implement-
ing the optimal linear predictor for each pixel from observations obtained through
multiple nearby motion vectors. Furthermore, AIMC designs K-sets of estimation
coefficients that are trained to capture variation in local statistics. The predictor
adapts to the content by switching between K-sets of coefficients. Specifically, AIMC
can adapt in terms of how the estimates due to neighboring motion vectors should
be weighted, and can further account for arbitrary object shapes.

The AIMC approach provided substantial gains under fixed block size settings
[4]. This paper extends it to accommodate variable block size motion compensation
(VBMC), on which all recent coding standards rely heavily for flexible partitioning
[8]. VBMC poses a significant challenge on AIMC implementation, as the AIMC
approach operates on off-grid blocks that lie between motion vectors. Since VBMC
results in an unevenly spaced motion grid, the shapes of such off-grid blocks are
not necessarily rectangular, and the number of possible off-grid block shapes is large.
Hence, it would be impractical to train and store prediction coefficients for all possible
shapes of off-grid blocks.

We propose to circumvent this difficulty via a generalization of the AIMC approach
to accommodate the variable block size setting. This is achieved by “virtually” (i.e.,
only for the purpose of interpolation) breaking a block to match the minimum block
size of its non-causal neighbors and creating an appropriate interpolation tree struc-
ture, wherein each node extends from the original block partitioning. With the aid of
this tree structure, only square interpolation blocks of a few possible sizes are formed.
Therefore, we can train K−sets of prediction coefficients for each possible size, and
apply AIMC to each node of the interpolation tree. As the interpolation tree can be
inferred from the original partition structure available to the decoder, no additional
side information is needed. The choice of coefficient set needs to be transmitted, sim-
ilar to fixed block AIMC. In general AIMC is more beneficial to locations exhibiting
complex motion, whereas for nearly static regions, the additional side information
might outweigh the benefit of improvement in prediction accuracy. Therefore, we
incorporate a flag per superblock/CTU to indicate whether AIMC is enabled, so that
the encoder can optimally decide to spend the side information only when it is ben-
eficial. The experimental results validate the proposed paradigm with more than
5% bit-rate savings for video sequences with complex motion, and an average 2.35%
bit-rate savings when compared to the conventional VBMC.

2 Background

This section briefly introduces AIMC, as the objective of this paper is to generalize
AIMC to the variable block size setting. A more detailed description of AIMC can
be found in [4]. Consider conventional motion compensated predition, which can be

(a) Grid of motion vectors. (b) An example set of coefficient distributions
for the corresponding motion vectors.

Figure 1: Fixed block size adaptive interpolated motion compensated prediction.

written as,

x̃k(s) = x̂k−1(s− vi,j), (1)

where, vi,j denotes the motion vector for the (i, j) block, and x̂k−1(·) is a reconstructed
pixel in the previous frame. Since a single motion vector cannot accurately capture
complex motions within a block, the AIMC approach utilizes nearby motion vectors
to obtain additional estimates which can be combined in a way that varies across the
block. AIMC defines a block, Bi,j, lying between the motion vectors vi,j, vi+1,j, vi,j+1

and vi+1,j+1 as shown in Fig. 1a. Since a motion vector captures the average motion
for a standard block, we assume the effective position of a motion vector to be at the
center of its standard block. Thus the AIMC block as defined is off-grid, covering one
quadrant each of four neighboring standard blocks.

The final prediction for the AIMC off-grid block Bi,j is generated by linearly
combining the estimations with appropriate coefficients. Specifically, let stli,j be the
top-left pixel in Bi,j, and s′ = s− stli,j, be the relative position within the block. The
predictor for each pixel s ∈ Bi,j in frame k is

x̃k(s) =
1∑

m=0

1∑
n=0

cqm,n(s′)x̂k−1(s− vi+m,j+n) (2)

= cq(s′)ᵀx̂k−1(s), (3)

where cqm,n(s′) is the q-th set’s coefficient for prediction at position s′ using the cor-
responding neighboring motion vector. The set of coefficients is selected to minimize
the mean squared prediction error (MSE),

q = arg min
r∈{0,...,K−1}

∑
s∈Bi,j

(
xk(s) − cr(s′)ᵀx̂k−1(s)

)2
. (4)

Fig. 1b provides an example set of coefficients. As discussed in Sec. 1, the coefficients
allow us to adapt to the local statistics and capture significance of estimates due to
neighboring motion vectors. The pre-defined K-sets of coefficients are stored in both
encoder and decoder, and only the index of the selected set needs to be signaled to
the decoder.

(a) Original Partition. (b) Interpolated Block Partition.

Figure 2: An example of original partition and the inferred interpolated block parti-
tion.

(a) Original Partition. (b) Level 2 Partition
Matching.

(c) Final Partition.

Figure 3: An 1-D example for block size matching algorithm.

3 Generalization of Adaptive Interpolation in Variable Block Size
Coding

In the fixed block setting AIMC defines an off-grid block within the motion vector
grid to exploit nearby motion vectors, and form an interpolated prediction for the
off-grid block. However, in the variable block size setting, different block sizes could
be employed resulting in unevenly spaced motion grid. This dramatically increases
the number of the possible off-grid block patterns. Training and storing K-sets of
coefficients for each possible pattern would be impractical.

To overcome this challenge, we propose an interpolation tree structure that can
account for arbitrary block partitioning while still maintaining the simplicity of the
fixed block size setting. Specifically, we propose to “virtually” break the blocks to
match the non-causal neighbors’ block sizes to provide interpolation to a smaller
neighboring block. An example of such a division is illustrated in Fig. 2. This re-
quired partition for interpolated prediction can be inferred from the original partition.
Therefore, no side information is needed for this new partition structure.

An illustrative 1-D example (with binary tree instead of quad-tree for 2-D) is
shown in Fig. 3 to demonstrate the construction process for a interpolated block
partition. Starting from the root (level 0), at each level, we split a node to match the
partition of its non-causal neighbors (the right neighbor in the 1-D case). Explicitly,

(a) Interpolated prediction built for the
top-right block.

(b) Interpolated prediction for the entire
partition structure

Figure 4: Interpolated prediction built for the example partition in Fig. 2

let root be the root of the structure. The non-causal block partition matching can be
completed via the function Partition matching(root) described in Algorithm 1,
wherein the function non causal neighbor is split returns true if at least one of the
non-causal neighbors of the current block is divided into smaller blocks in the original
partition structure. We note that the original partition structure can be constructed
by reading the node.is split field and the new partition structure is constructed by
the node.force split field. In the 2-D quad-tree structure, we define the non-causal
neighbors to be the right, bottom, or bottom-right of the current block, and we treat
rectangular blocks as a combination of two smaller square blocks (therefore, all the
blocks in the interpolated tree structure are squared).

Algorithm 1 Non-causal Block Partition Matching

function Partition matching(node)
if node is empty then return
end if
need to split← non causal neighbor is split(node)
node.force split = node.is split || need to split
for each child in node.children do

Partition matching(child)
end for

end function

We perform this block matching algorithm for each superblock/CTU, and shift
each block towards bottom-right corner by half of the block size (we ignore the blocks
shifted outside the superblock/CTU boundaries). We refer this new partition struc-
ture as interpolation tree. Each node in an interpolation tree is an off-grid block
with respect to the original partitioning, and each quadrant of a off-grid block only
cover one standard BMC block. Therefore, there is no ambiguity in assigning motion
vectors to an off-grid block. A standard block’s motion vector is assigned to the
overlapped off-grid block’s corner, and the AIMC approach is applied to each off-grid
block. Fig. 4 illustrates how interpolated predictions are done for the example par-
tition in Fig. 2. Breaking the blocks using the proposed algorithm results in very
limited off-grid block patterns, leading to reduction of complexity and simplification

(a) The reconstructed frame. (b) Interpolated prediction area of the
corresponding frame shown in Fig. 5a.

Figure 5: The reconstructed frame and the corresponding interpolated prediction area
(colored with black).

of implementation. As a result, we can design K−sets of estimation coefficients for
each possible off-grid block pattern using the training algorithm similar to the original
work in [4].

Note that there are three types of interpolated blocks in this structure. First,
the blocks lying across the original block partition boundaries are valid blocks (solid
blocks in Fig. 4), where AIMC can be performed. Second, the blocks lying entirely
within the original blocks are non-valid interpolation blocks (dotted blocks in Fig. 4).
No interpolation is done for this kind of blocks and side information is saved. Finally,
the blocks which generate predictions that overlap to some extent with previously
predicted regions (diagonal-striped blocks in Fig. 4). By construction, only a part of
large interpolated block can be over-written by smaller interpolation blocks. There-
fore, we allow new interpolated predictions to overwrite the old ones based on the
scan order to refine the interpolated prediction.

3.1 Deployment of Interpolated Prediction

Clearly, an area with complex texture and motion benefits most from the interpo-
lated prediction framework, even at the cost of transmitting the interpolation modes.
For the area that can be well predicted by the conventional prediction, the addi-
tional side information will result in degradation of RD performance. Therefore, we
add a flag to each superblock/CTU to indicate whether the proposed interpolated
prediction is used for a superblock/CTU. The RD costs of both original and inter-
polated predictions of a superblock/CTU are computed. The flag is on if the RD
cost of the interpolated prediction is less than the RD cost of the original prediction;
otherwise the flag is off and interpolated prediction will not be used for the entire
superblock/CTU. Fig. 5 shows a reconstruction frame in the Flower sequence, and
the corresponding area where interpolated prediction is applied. The proposed on-off
mechanism allows the coder to refine the prediction only when it is necessary.

4 Experimental Results

We evaluate the proposed approach using the AV1 framework [1]. It is important to
emphasize that the proposed paradigm can be applied to any modern coders as they
all employ variants of VBMC. For simplicity of simulations, we restrict the minimum
partition block size to be 8 × 8, which limits the valid interpolated prediction block
sizes to be 8 × 8, 16 × 16 and 32 × 32. We also do not allow intra and compound
predictions for inter-frames and only use intra prediction to code the first frame of
each sequence. The coefficients of all block sizes are initialized using 2-D raised cosine
function, which is given as,

H2D(βx, βy, x, y) = C(x, y)H1D(βx, x)H1D(βy, y),

where H1D(βx, x) is the 1-D raised cosine function with a parameter B equal to the
corresponding block size,

H1D(β, x) =

1, 0 ≤ |x| ≤ (1−β)B

2
1
2

+ 1
2

cos
(
πB
β

[
x− (1−β)B

2

])
, (1−β)B

2
< |x|

0, otherwise

and C(x, y) is the normalization function.
We select (βx, βy) ∈ {(0, 1), (1, 0), (1, 1)} for 8 × 8 and 16 × 16 blocks, and

(βx, βy) ∈ {(0, 0.5), (0.5, 0), (0.5, 0.5)} for 32 × 32 blocks (i.e K = 3 for all sizes of
blocks), and the initial coefficients are generated by uniformly sampling the function
H2D(βx, βy, x, y) for 0 ≤ x, y ≤ 1. The coefficients are trained using the algorithm
described in the previous work [4] in fixed block size setting with QP equals to 20.
The same sets of trained coefficients are then applied to all the videos coded under
the variable block size setting in different target bit rate region and different range
of resolution. The training set contains first 100 frames of Flower, BlowingBubbles,
Freman, and Coastguard sequences. The coefficients are stored in both encoder and
decoder side. The mode index and the interpolated prediction enabled flag are written
into bitstream by using the symbol writer in the AV1 codec.

For testing, we encode the first 100 frames of each video sequences using target
bit rate mode, wherein the coder can adjust QP values to match a given bit-rate. The
bit-rate range is selected to cover a wide range of qualities as shown in Fig. 6. The
performance gain in terms of BD rate reduction is summarized in Table 1. From the
results, we observe that for the sequences with nearly static scenes, such as Bridge-far
and Bridge-close, the proposed paradigm provides little gains since VBMC already
provides decent predictions, and the prediction quality improvement of the proposed
approach cannot compensate for the rate cost. Therefore, most of the superblocks
in these sequences have interpolated prediction disabled. However, for videos with
complex motion, the interpolated blocks and the trained coefficients properly account
for the neighboring motion vectors, and therefore provide substantial gains. By con-
trast, the conventional VBMC is restricted to use a compromised single motion to
approximate complex motions and predict the entire rigid rectangular block.

Figure 6: Coding performance comparision for sequence Mobile.

Table 1: BD rate reduction for the proposed approaches relative to AV1

Bit-Rate
Sequence Reduction (%)

Waterfall 4.371
Flower 5.874
Stefan 2.977
Mobile 5.106

Coastguard 0.486
Bridge-close 0.516
Bridge-far 0.401
Foreman 1.395

Bus 2.824
Akyio 1.075

BlowingBubbles 2.035
BQSquare 4.749
BQMall 1.795
Shields 1.313

Park run 1.069

Average 2.3505

5 Conclusion

In this paper, a novel approach is proposed to generalize the AIMC method to account
for the variable block size setting. This approach enables substantial gains from em-

ploying variable block sizes partitioning, and further improve its performance while
maintaining simplicity of the original AIMC approach. A flag is added per-superblock
to adapt to the content of video frame to properly enable the interpolated prediction
when necessary. The experimental results show that the proposed approach signifi-
cantly improves the RD performance. Further improvement is expected with optimal
design of number of modes for each block size and online adaptation of coefficients
based on hyper-local statistics. Future work will also include mode prediction to
reduce side information.

References

[1] “AOM - Alliance for Open Media,” http://aomedia.org/.

[2] D. Mukherjee, H. Su, J. Bankoski, A. Converse, J. Han, Z. Liu, and Y. Xu, “An overview
of new video coding tools under consideration for vp10 the successor to vp9,” in SPIE
Optical Engineering+ Applications. International Society for Optics and Photonics,
2015, pp. 95 991E–95 991E.

[3] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the high efficiency
video coding (hevc) standard,” IEEE Transactions on circuits and systems for video
technology, vol. 22, no. 12, pp. 1649–1668, 2012.

[4] W.-T. Lin, T. Nanjundaswamy, and K. Rose, “Adaptive interpolated motion compen-
sated prediction,” in Proc. IEEE International Conference on Image Processing, pp.
943–947, 2017.

[5] H. Watanabe and S. Singhal, “Windowed motion compensation,” in Proc. of the SPIE
Conf. on Visual Communications and Image Processing, pp. 582–589, 1991.

[6] S. Nogaki and M. Ohta, “An overlapped block motion compensation for high quality mo-
tion picture coding,” in Proc. IEEE International Symposium on Circuits and Systems,
vol. 1, pp. 184–187, 1992.

[7] M. T. Orchard and G. J. Sullivan, “Overlapped block motion compensation: An
estimation-theoretic approach,” IEEE Transactions on Image Processing, vol. 3, no. 5,
pp. 693–699, 1994.

[8] G. J. Sullivan and R. L. Baker, “Efficient quadtree coding of images and video,” IEEE
Transactions on Image Processing, vol. 3, no. 3, pp. 327–331, 1994.

